Jia-biao Zou, Wei Li, Li-li Ye, Xiao-yuan Zhang, Yu-yang Li, Jiu-zhong Yang, Fei Qi. Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 537-546. doi: 10.1063/1674-0068/31/cjcp1806135
Citation: Jia-biao Zou, Wei Li, Li-li Ye, Xiao-yuan Zhang, Yu-yang Li, Jiu-zhong Yang, Fei Qi. Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 537-546. doi: 10.1063/1674-0068/31/cjcp1806135

Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study

doi: 10.1063/1674-0068/31/cjcp1806135
  • Received Date: 2018-06-07
  • We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (~80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model[Combust. Flame 160 , 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the decomposition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-1-al and OH radical.
  • 加载中
  • [1] R. D. Reitz, Combust. Flame 160, 1(2013).
    [2] A. K. Agarwal, A. P. Singh, and R. K. Maurya, Prog. Energy Combust. Sci. 61, 1(2017).
    [3] R. D. Reitz and G. Duraisamy, Prog. Energy Combust. Sci. 46, 12(2015).
    [4] T. A. Litzinger, Prog. Energy Combust. Sci. 16, 155(1990).
    [5] M. Mehl, T. Faravelli, E. Ranzi, T. Lucchini, A. Onorati, F. Giavazzi, P. Scorletti, and D. Terna, Kinetic Modeling of Knock Properties in Internal Combustion Engines, SAE Technical Paper, (2006).
    [6] L. Shafer, R. Striebich, J. Gomach, and T. Edwards, Chemical Class Composition of Commercial Jet Fuels and Other Specialty Kerosene Fuels, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 7972(2006).
    [7] C. K. Westbrook, P. J. Smith, Fuel Utilization, in:Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels, A. McIlroy and G. McRae, Eds. US Department of Energy:Washington, DC (2006).
    [8] W. S. Neill, W. L. Chippior, J. Cooley, M. Doma, C. Fairbridge, R. Falkiner, R. L. McCormick and K. Mitchell, Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude, Society of Automotive Engineers Paper No.2003-01-3144(2003).
    [9] F. L. Dryer, Proc. Combust. Inst. 35, 117(2015).
    [10] T. Edwards, M. Colket, N. Cernansky, F. Dryer, F. Egolfopoulos, D. Friend, E. Law, D. Lenhert, P. Lindstedt, and H. Pitsch, Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels, 45th AIAA Aerospace Sciences Meeting and Exhibit, 770(2007).
    [11] B. Sirjean, F. Buda, H. Hakka, P. A. Glaude, R. Fournet, V. Warth, F. Battin-Leclerc, and M. Ruiz-Lopez, Proc. Combust. Inst. 31, 277(2007).
    [12] S. M. Daley, A. M. Berkowitz, and M. A. Oehlschlaeger, Int. J. Chem. Kinet. 40, 624(2008).
    [13] Z. Hong, K. Y. Lam, D. F. Davidson, and R. K. Hanson, Combust. Flame 158, 1456(2011).
    [14] Z. Tian, Y. Zhang, F. Yang, L. Pan, X. Jiang, and Z. Huang, Energy Fuels 28, 7159(2014).
    [15] Z. M. Tian, Y. J. Zhang, F. Y. Yang, and Z. H. Huang, Energy Fuels 29, 2685(2015).
    [16] C. S. McEnally and L. D. Pfefferle, Combust. Flame 136, 155(2004).
    [17] W. Fujia, A. P. Kelley, and C. K. Law, Combust. Flame 159, 1417(2012).
    [18] Z. Serinyel, O. Herbinet, O. Frottier, P. Dirrenberger, V. Warth, P. A. Glaude, and F. Battin-Leclerc, Combust. Flame 160, 2319(2013).
    [19] S. G. Davis and C. K. Law, Combust. Sci. and Tech. 140, 427(1998).
    [20] C. S. Ji, E. Dames, B. Sirjean, H. Wang, and F. N. Egolfopoulos, Proc. Combust. Inst. 33, 971(2011).
    [21] M. E. Law, P. R. Westmoreland, T. A. Cool, J. Wang, N. Hansen, C. A. Taatjes, and T. Kasper, Proc. Com bust. Inst. 31, 565(2007).
    [22] A. Ciajolo, A. Tregrossi, M. Mallardo, T. Faravelli, and E. Ranzi, Proc. Combust. Inst. 32, 585(2009).
    [23] W. Li, M. E. Law, P. R. Westmoreland, T. Kasper, N. Hansen, and K. Kohse-Hoeinghaus, Combust. Flame 158, 2077(2011).
    [24] D. Voisin, A. Marchal, M. Reuillon, J. C. Boettner, and M. Cathonnet, Combust. Sci. Tech. 138, 137(1998).
    [25] A. El Bakli, M. Braun-Unkhoff, P. Dagaut, P. Frank, and M. Cathonnet, Proc. Combust. Inst. 28, 1631(2000).
    [26] Z. Wang, Z. Cheng, W. Yuan, J. Cai, L. Zhang, F. Zhang, F. Qi, and J. Wang, Combust. Flame 159, 2243(2012).
    [27] O. Lemaire, M. Ribaucour, M. Carlier, and R. Minetti, Combust. Flame 127, 1971(2001).
    [28] S. Vranckx, C. Lee, H. K. Chakravarty, and R. X. Fernandes, Proc. Combust. Inst. 34, 377(2013).
    [29] Y. Yang, A. L. Boehman, and J. M. Simmie, Combust. Flame 157, 2369(2010).
    [30] F. Buda, B. Heyberger, R. Fournet, P. A. Glaude, V. Warth, and F. Battin-Leclerc, Energy Fuels 20, 1450(2006).
    [31] B. Sirjean, P. A. Glaude, M. F. Ruiz-Lopèz, and R. Fournet, J. Phys. Chem. A 112, 11598(2008).
    [32] B. Sirjean, P. A. Glaude, M. F. Ruiz-Lopez, and R. Fournet, J. Phys. Chem. A 113, 6924(2009).
    [33] Z. Zhou, X. Du, J. Yang, Y. Wang, C. Li, S. Wei, L. Du, Y. Li, F. Qi, and Q. Wang, J. Synchrot. Radiat. 23, 1035(2016).
    [34] X. Zhang, L. Ye, Y. Li, Y. Zhang, C. Cao, J. Yang, Z. Zhou, Z. Huang, and F. Qi, Combust. Flame 191, 431(2018).
    [35] U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, and K. KohseHöinghaus, Z. Phys. Chem. 223, 503(2009).
    [36] P. Azay and G. Côme, Ind. Eng. Chem. Process. Des. Dev. 18, 754(1979).
    [37] Y. Li, L. Zhang, Z. Tian, T. Yuan, J. Wang, B. Yang, and F. Qi, Energy Fuels 23, 1473(2009).
    [38] Photoionization Cross Section Database (Version 1.0), 2011. http://flame.nsrl.ustc.edu.cn/en/database.htm.
    [39] A. Rodriguez, O. Herbinet, X. Z. Meng, C. Fittschen, Z.D. Wang, L. L. Xing, and L. D. Zhang, F. BattinLeclerc, J. Phys. Chem. A 121, 1861(2017).
    [40] C. Cavallotti, R. Rota, T. Faravelli, and E. Ranzi, Proc. Combust. Inst. 31, 201(2007).
    [41] E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli, Prog. Energy Combust. Sci. 27, 99(2001).
    [42] S. Handford-Styring, R. Walker, Phys. Chem. Chem. Phys. 3, 2043(2001).
    [43] E. J. Silke, W. J. Pitz, C. K. Westbrook, and M. Ribaucour, J. Phys. Chem. A 111, 3761(2007).
    [44] R. X. Fernandes, J. Zador, L. E. Jusinski, J. A. Miller, C. A. Taatjes, Phys. Chem. Chem. Phys. 11, 1320(2009).
    [45] W. J. Pitz, C. V. Naik, T. N. Mhaoldúin, C. K. Westbrook, H. J. Curran, J. P. Orme, and J. M. Simmie, Proc. Combust. Inst. 31, 267(2007).
    [46] S. K. Gulati and R. W. Walker, J. Chem. Soc., Perkin Trans. 285, 1799(1989).
    [47] S. Granata, T. Faravelli, and E. Ranzi, Combust. Flame 132, 533(2003).
    [48] R. J. Kee, F. M. Rupley, J. A. Miller, M. Coltrin, J. Grcar, E. Meeks, H. Moffat, A. Lutz, G. Dixon-Lewis, M. D. Smooke, CHEMKIN-PRO 15083, Reaction Design:San Diego (2009).
    [49] F. Battin-Leclerc, O. Herbinet, P.A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Angew. Chem. 49, 3169(2010).
    [50] Z. D. Wang, O. Herbinet, Z. J. Cheng, B. Husson, R. Fournet, F. Qi, and F. Battin-Leclerc, J. Phys. Chem. A 118, 5573(2014).
    [51] F. Battin-Leclerc, Prog. Energy Combust. Sci. 34, 440(2008).
    [52] J. Zádor, C. A. Taatjes, and R. X. Fernandes, Prog. Energy Combust. Sci. 37, 371(2011).
    [53] S. M. Handford-Styring and R. W. Walker, J. Chem. Soc. Faraday Trans. 91, 1431(1995).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(657) PDF downloads(388) Cited by()

Proportional views
Related

Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study

doi: 10.1063/1674-0068/31/cjcp1806135

Abstract: We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (~80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model[Combust. Flame 160 , 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the decomposition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-1-al and OH radical.

Jia-biao Zou, Wei Li, Li-li Ye, Xiao-yuan Zhang, Yu-yang Li, Jiu-zhong Yang, Fei Qi. Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 537-546. doi: 10.1063/1674-0068/31/cjcp1806135
Citation: Jia-biao Zou, Wei Li, Li-li Ye, Xiao-yuan Zhang, Yu-yang Li, Jiu-zhong Yang, Fei Qi. Exploring the Low-Temperature Oxidation Chemistry of Cyclohexane in a Jet-Stirred Reactor: an Experimental and Kinetic Modeling Study[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 537-546. doi: 10.1063/1674-0068/31/cjcp1806135
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return