Junjun Tan, Chuanzhao Li, Jiahui Zhang, Shuji Ye. Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 523-528. doi: 10.1063/1674-0068/31/cjcp1805128
Citation: Junjun Tan, Chuanzhao Li, Jiahui Zhang, Shuji Ye. Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 523-528. doi: 10.1063/1674-0068/31/cjcp1805128

Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy

doi: 10.1063/1674-0068/31/cjcp1805128
  • Received Date: 2018-05-31
  • Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biomolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with sufficient structural and temporal resolutions. Here, we demonstrate that a femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-time peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the amide I and amide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of membrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interfacial fast processes, which will be certainly helpful for providing a clear physical picture of the interfacial phenomena.
  • 加载中
  • [1] L. Fu, G. Ma, and E. C. Yan, J. Am. Chem. Soc. 132, 5405(2010).
    [2] G. van Meer, D. R. Voelker, and G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 9, 112(2008).
    [3] A. J. M. Driessen and N. Nouwen, Annu. Rev. Biochem. 77, 643(2008).
    [4] B. Ding, J. Jasensky, Y. Li, and Z. Chen, Acc. Chem. Res. 49, 1149(2016).
    [5] B. Ding, A. Panahi, J. J. Ho, J. E. Laaser, C. L. Brooks, M. T. Zanni, and Z. Chen, J. Am. Chem. Soc. 137, 10190(2015).
    [6] M. Y. Xiao, S. Joglekar, X. X. Zhang, J. Jasensky, J. L. Ma, Q. Y. Cui, L. J. Guo, and Z. Chen, J. Am. Chem. Soc. 139, 3378(2017).
    [7] X. Wang, P. Yang, F. Mondiot, Y. Li, D. S. Miller, Z. Chen, and N. L. Abbott, Chem. Comm. 51, 16844(2015).
    [8] S. Badieyan, Q. Wang, X. Zou, Y. Li, M. Herron, N. L. Abbott, Z. Chen, and E. N. G. Marsh, J. Am. Chem. Soc. 139, 2872(2017).
    [9] L. Schmüser, S. Roeters, H. Lutz, S. Woutersen, M. Bonn, and T. Weidner, J. Phys. Chem. Lett. 8, 3101(2017).
    [10] S. J. Roeters, C. N. van Dijk, A. Torres-Knoop, E. H. G. Backus, R. K. Campen, M. Bonn, and S. Woutersen, J. Phys. Chem. A 117, 6311(2013).
    [11] D. K. Schach, W. Rock, J. Franz, M. Bonn, S. H. Parekh, and T. Weidner, J. Am. Chem. Soc. 137, 12199(2015).
    [12] Y. Liu, J. J. Tan, J. H. Zhang, C. Z. Li, Y. Luo, and S. J. Ye, Chem. Comm. 54, 5903(2018).
    [13] H. Lu, M. A. Hood, S. Mauri, J. E. Baio, M. Bonn, R. Munoz Espi, and T. Weidner, Chem. Comm. 51, 15902(2015).
    [14] L. Fu, J. Liu, and E. C. Y. Yan, J. Am. Chem. Soc. 133, 8094(2011).
    [15] L. Fu, Z. Wang, B. T. Psciuk, D. Xiao, V. S. Batista, and E. C. Y. Yan, J. Phys. Chem. Lett. 6, 1310(2015).
    [16] E. C. Y. Yan, L. Fu, Z. Wang, and W. Liu, Chem. Rev. 114, 8471(2014).
    [17] Z. Wang, M. D. Morales-Acosta, S. Li, W. Liu, T. Kanai, Y. Liu, Y. N. Chen, F. J. Walker, C. H. Ahn, R. M. Leblanc, and E. C. Y. Yan, Chem. Comm. 52, 2956(2016).
    [18] H. I. Okur, J. Kherb, and P. S. Cremer, J. Am. Chem. Soc. 135, 5062(2013).
    [19] E. Bilkova, R. Pleskot, S. Rissanen, S. Sun, A. Czogalla, L. Cwiklik, T. Róg, I. Vattulainen, P. S. Cremer, P. Jungwirth, and Ü. Coskun, J. Am. Chem. Soc. 139, 4019(2017).
    [20] A. M. Jubb, W. Hua, and H. C. Allen, Acc. Chem. Res. 45, 110(2012).
    [21] W. Hua, D. Verreault, and H. C. Allen, J. Am. Chem. Soc. 137, 13920(2015).
    [22] W. Xiong, J. E. Laaser, R. D. Mehlenbacher, and M. T. Zanni, Proc. Natl. Acad. Sci. USA 108, 20902(2011).
    [23] K. Meister, S. Strazdaite, A. L. DeVries, S. Lotze, L. L. C. Olijve, I. K. Voets, and H. J. Bakker, Proc. Natl. Acad. Sci. USA 111, 17732(2014).
    [24] S. Strazdaite, K. Meister, and H. J. Bakker, J. Am. Chem. Soc. 139, 3716(2017).
    [25] S. J. Ye, H. C. Li, W. L. Yang, and Y. Luo, J. Am. Chem. Soc. 136, 1206(2014).
    [26] J. J. Tan, B. X. Zhang, Y. Luo, and S. J. Ye, Angew. Chem. Int. Ed. 56, 12977(2017).
    [27] J. J. Tan, Y. Luo, and S. J. Ye, Chin. J. Chem. Phys. 30, 671(2017).
    [28] W. Im and C. L. Brooks, Proc. Natl. Acad. Sci. USA 102, 6771(2005).
    [29] M. B. Ulmschneider, J. P. Doux, J. A. Killian, J. C. Smith, and J. P. Ulmschneider, J. Am. Chem. Soc. 132, 3452(2010).
    [30] L. V. Schäfer, D. H. de Jong, A. Holt, A. J. Rzepiela, A. H. de Vries, B. Poolman, J. A. Killian, and S. J. Marrink, Proc. Natl. Acad. Sci. USA 108, 1343(2011).
    [31] J. H. Zhang, W. L. Yang, J. J. Tan, and S. J. Ye, Phys. Chem. Chem. Phys. 20, 5657(2018).
    [32] X. Hu, J. J. Tan, and S. J. Ye, J. Phys. Chem. C 121, 15181(2017).
    [33] T. Yu, G. N. Zhou, X. Hu, and S. J. Ye, Langmuir 32, 11681(2016).
    [34] J. H. Huang, K. Z. Tian, S. J. Ye, and Y. Luo, J. Phys. Chem. C 120, 15322(2016).
    [35] L. Fu, D. Xiao, Z. G. Wang, V. S. Batista, and E. C. Y. Yan, J. Am. Chem. Soc. 135, 3592(2013).
    [36] A. Barth and C. Zscherp, Quar. Rev. Biophys. 35, 369(2002).
    [37] L. K. Tamm and S. A. Tatulian, Quar. Rev. Biophys. 30, 365(1997).
    [38] S. Wolf, E. Freier, Q. Cui, and K. Gerwert, J. Chem. Phys. 141, 22D524(2014).
    [39] B. X. Zhang, J. J. Tan, C. Z. Li, J. H. Zhang, and S. J. Ye, Langmuir 34, 7554(2018).
    [40] W. Hua, D. Verreault, and H. C. Allen, ChemPhysChem 16, 3910(2015).
    [41] X. Chen, W. Hua, Z. Huang, and H. C. Allen, J. Am. Chem. Soc. 132, 11336(2010).
    [42] T. Ohto, E. H. G. Backus, C. S. Hsieh, M. Sulpizi, M. Bonn, and Y. Nagata, J. Phys. Chem. Lett. 6, 4499(2015).
    [43] J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 134, 7842(2012).
    [44] J. A. Mondal, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, J. Am. Chem. Soc. 132, 10656(2010).
    [45] A. Kundu, S. Yamaguchi, and T. Tahara, J. Phys. Chem. Lett. 5, 762(2014).
    [46] Y. Nagata and S. Mukamel, J. Am. Chem. Soc. 132, 6434(2010).
    [47] T. Ishiyama, D. Terada, and A. Morita, J. Phys. Chem. Lett. 7, 216(2016).
    [48] K. A. Becraft, F. G. Moore, and G. L. Richmond, J. Phys. Chem. B 107, 3675(2003).
    [49] S. L. Ma, H. C. Li, K. Z. Tian, S. J. Ye, and Y. Luo, J. Phys. Chem. Lett. 5, 419(2014).
    [50] W. L. Yang, K. Z. Tian, and S. J. Ye, Chin. J. Chem. Phys. 28, 518(2015).
    [51] W. Sung, S. Seok, D. Kim, C. S. Tian, and Y. R. Shen, Langmuir 26, 18266(2010).
    [52] J. Park, J. H. Ha, and R. M. Hochstrasser, J. Chem. Phys. 121, 7281(2004).
    [53] M. M. Coleman, K. H. Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules 19, 2149(1986).
    [54] E. J. Cocinero, P. Carcabal, T. D. Vaden, J. P. Simons, and B. G. Davis, Nature 469, 76(2011).
    [55] E. B. Dunkelberger, A. M. Woys, and M. T. Zanni, J. Phys. Chem. B 117, 15297(2013).
    [56] J. A. Demmers, J. Haverkamp, A. J. Heck, R. E. Koeppe, and J. A. Killian, Proc. Natl. Acad. Sci. USA 97, 3189(2000).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(686) PDF downloads(348) Cited by()

Proportional views
Related

Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy

doi: 10.1063/1674-0068/31/cjcp1805128

Abstract: Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biomolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with sufficient structural and temporal resolutions. Here, we demonstrate that a femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-time peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the amide I and amide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of membrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interfacial fast processes, which will be certainly helpful for providing a clear physical picture of the interfacial phenomena.

Junjun Tan, Chuanzhao Li, Jiahui Zhang, Shuji Ye. Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 523-528. doi: 10.1063/1674-0068/31/cjcp1805128
Citation: Junjun Tan, Chuanzhao Li, Jiahui Zhang, Shuji Ye. Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 523-528. doi: 10.1063/1674-0068/31/cjcp1805128
Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return