Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction†[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127
Citation: Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127

Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction

doi: 10.1063/1674-0068/31/cjcp1805127
More Information
  • Author Bio:

    Jing-hong Li is a Cheung Kong Professor in Department of Chemistry at Tsinghua University, China. He received his B.S. degree in 1991 from the University of Science and Technology of China and his Ph.D. in 1996 from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. His current research interests include electro-analytical chemistry, bio-electrochemistry and sensors, physical electrochemistry and interfacial electro¬chemistry, electrochemical materials science and nanoscopic electrochemistry, fundamental aspects of energy conversion and storage, advanced battery materials, and photoelectro-chemistry

  • Corresponding author: Jing-hong Li, E-mail: jhli@mail.tsinghua.edu.cn
  • Received Date: 2018-05-31
  • Accepted Date: 2018-06-25
  • Publish Date: 2018-08-27
  • Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co3O4 electrocatalyst using a pyrolysis strategy for oxygen evolution reaction (OER). Morphological characterization confirmed the ultra-thin structure of nanosheet. Further, the existence of oxygen vacancies was obviously evidenced by the X-ray photoelectron spectroscopy and electron spin resonance spectroscopy. The increased surface area of Co3O4 ensures more exposed sites, whereas generated oxygen vacancies on Co3O4 surface create more active defects. The two scenarios were beneficial for accelerating the OER across the interface between the anode and electrolyte. As expected, the optimized Co3O4 nanosheets can catalyze the OER efficiently with a low overpotential of 310 mV at current density of 10 mA/cm2 and remarkable long-term stability in 1.0 mol/L KOH.

     

  • Part of the special issue for celebration of "the 60th Anniversary of University of Science and Technology of China and the 30th Anniversary of Chinese Journal of Chemical Physics"
  • loading
  • [1]
    J. W. Desmond Ng, Y. Gorlin, T. Hatsukade, and T. F. Jaramillo, Adv. Energy. Mater. 3, 1545(2013). doi: 10.1002/aenm.v3.12
    [2]
    Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, and Y. Xie, J. Am. Chem. Soc. 136, 15670(2014). doi: 10.1021/ja5085157
    [3]
    C. W. Tung, Y. Y. Hsu, Y. P. Shen, Y. Zheng, T. S. Chan, H. S. Sheu, Y. C. Cheng, and H. M. Chen, Nat. Commun. 6, 8106(2015). doi: 10.1038/ncomms9106
    [4]
    P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Nature Mater. 11, 19(2011).
    [5]
    J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, and T. F. Jaramillo, Nature Energy 1, 16053(2016). doi: 10.1038/nenergy.2016.53
    [6]
    X. Zhang, W. Sun, H. Du, R. M. Kong, and F. Qu, Inorg. Chem. Front. 5, 344(2018). doi: 10.1039/C7QI00630F
    [7]
    X. Guo, R. M. Kong, X. Zhang, H. Du, and F. Qu, ACS Catal. 8, 651(2017).
    [8]
    W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, and Y. Shao-Horn, Energy Environ. Sci. 8, 1404(2015). doi: 10.1039/C4EE03869J
    [9]
    L. Tao, C. Y. Lin, S. Dou, S. Feng, D. Chen, D. Liu, J. Huo, Z. Xia, and S. Wang, Nano Energy 41, 417(2017). doi: 10.1016/j.nanoen.2017.09.055
    [10]
    G. Zhang, G. Wang, H. Liu, J. Qu, and J. Li, Nano Energy 43, 359(2017).
    [11]
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, and K. Hashimoto, Nat. Commun. 4, 239(2013). http://www.ncbi.nlm.nih.gov/pubmed/23979080
    [12]
    G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, and J. Li, J. Am. Chem. Soc. 138, 14686(2016). doi: 10.1021/jacs.6b08491
    [13]
    C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J. Am. Chem. Soc. 135, 16977(2013). doi: 10.1021/ja407115p
    [14]
    Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 399(2012). doi: 10.1021/jz2016507
    [15]
    R. Bashyam and P. Zelenay, Nature 443, 63(2006). doi: 10.1038/nature05118
    [16]
    M. Sun, G. Zhang, H. Liu, Y. Liu, and J. Li, Sci. China Mater. 58, 683(2015). doi: 10.1007/s40843-015-0082-x
    [17]
    M. Sun, H. Liu, J. Qu, and J. Li, Adv. Energy. Mater. 6, 1600087(2016). doi: 10.1002/aenm.201600087
    [18]
    Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare, and T. Zhang, Adv. Mater. 29, 201770305(2017).
    [19]
    S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu, Q. Hu, Y. Sun, T. Yao, W. Zhang, S. Wei, and Y. Xie, Nat. Commun. 8, 14503(2017). doi: 10.1038/ncomms14503
    [20]
    J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston, and K. J. Stevenson, Nat. Commun. 7, 11503(2016). doi: 10.1038/ncomms11503
    [21]
    H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Nature Mater. 15, 48(2016). doi: 10.1038/nmat4465
    [22]
    L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Angew. Chem. Int. Ed. 55, 5277(2016). doi: 10.1002/anie.201600687
    [23]
    F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, and J. Chen, Angew. Chem. Int. Ed. 52, 2474(2013). doi: 10.1002/anie.v52.9
    [24]
    Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W. B. Cai, Z. Yang, and G. Zheng, Adv. Energy. Mater. 4, 1400696(2014). doi: 10.1002/aenm.201400696
    [25]
    F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, and Y. Xie, J. Am. Chem. Soc. 136, 6826(2014). doi: 10.1021/ja501866r
    [26]
    J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, and S. Guo, Adv. Mater. 29, 201704681(2017).
    [27]
    H. Y. Wang, S. F. Hung, H. Y. Chen, T. S. Chan, H. M. Chen, and B. Liu, J. Am. Chem. Soc. 138, 36(2016). doi: 10.1021/jacs.5b10525
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1197) PDF downloads(455) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return