Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127
Citation: Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127

Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction

doi: 10.1063/1674-0068/31/cjcp1805127
  • Received Date: 2018-05-31
  • Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co3O4 electrocatalyst using a pyrolysis strategy for oxygen evolution reaction (OER). Morphological characterization confirmed the ultra-thin structure of nanosheet. Further, the existence of oxygen vacancies was obviously evidenced by the X-ray photoelectron spectroscopy and electron spin resonance spectroscopy. The increased surface area of Co3O4 ensures more exposed sites, whereas generated oxygen vacancies on Co3O4 surface create more active defects. The two scenarios were beneficial for accelerating the OER across the interface between the anode and electrolyte. As expected, the optimized Co3O4 nanosheets can catalyze the OER efficiently with a low overpotential of 310 mV at current density of 10 mA/cm2 and remarkable long-term stability in 1.0 mol/L KOH.
  • 加载中
  • [1] J. W. Desmond Ng, Y. Gorlin, T. Hatsukade, and T. F. Jaramillo, Adv. Energy. Mater. 3, 1545(2013).
    [2] Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, and Y. Xie, J. Am. Chem. Soc. 136, 15670(2014).
    [3] C. W. Tung, Y. Y. Hsu, Y. P. Shen, Y. Zheng, T. S. Chan, H. S. Sheu, Y. C. Cheng, and H. M. Chen, Nat. Commun. 6, 8106(2015).
    [4] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Nature Mater. 11, 19(2011).
    [5] J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, and T. F. Jaramillo, Nature Energy 1, 16053(2016).
    [6] X. Zhang, W. Sun, H. Du, R. M. Kong, and F. Qu, Inorg. Chem. Front. 5, 344(2018).
    [7] X. Guo, R. M. Kong, X. Zhang, H. Du, and F. Qu, ACS Catal. 8, 651(2017).
    [8] W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, and Y. Shao-Horn, Energy Environ. Sci. 8, 1404(2015).
    [9] L. Tao, C. Y. Lin, S. Dou, S. Feng, D. Chen, D. Liu, J. Huo, Z. Xia, and S. Wang, Nano Energy 41, 417(2017).
    [10] G. Zhang, G. Wang, H. Liu, J. Qu, and J. Li, Nano Energy 43, 359(2017).
    [11] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, and K. Hashimoto, Nat. Commun. 4, 239(2013).
    [12] G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu, and J. Li, J. Am. Chem. Soc. 138, 14686(2016).
    [13] C. C. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, J. Am. Chem. Soc. 135, 16977(2013).
    [14] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett. 3, 399(2012).
    [15] R. Bashyam and P. Zelenay, Nature 443, 63(2006).
    [16] M. Sun, G. Zhang, H. Liu, Y. Liu, and J. Li, Sci. China Mater. 58, 683(2015).
    [17] M. Sun, H. Liu, J. Qu, and J. Li, Adv. Energy. Mater. 6, 1600087(2016).
    [18] Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare, and T. Zhang, Adv. Mater. 29, 201770305(2017).
    [19] S. Gao, Z. Sun, W. Liu, X. Jiao, X. Zu, Q. Hu, Y. Sun, T. Yao, W. Zhang, S. Wei, and Y. Xie, Nat. Commun. 8, 14503(2017).
    [20] J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston, and K. J. Stevenson, Nat. Commun. 7, 11503(2016).
    [21] H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Nature Mater. 15, 48(2016).
    [22] L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai, Angew. Chem. Int. Ed. 55, 5277(2016).
    [23] F. Cheng, T. Zhang, Y. Zhang, J. Du, X. Han, and J. Chen, Angew. Chem. Int. Ed. 52, 2474(2013).
    [24] Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W. B. Cai, Z. Yang, and G. Zheng, Adv. Energy. Mater. 4, 1400696(2014).
    [25] F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, and Y. Xie, J. Am. Chem. Soc. 136, 6826(2014).
    [26] J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, and S. Guo, Adv. Mater. 29, 201704681(2017).
    [27] H. Y. Wang, S. F. Hung, H. Y. Chen, T. S. Chan, H. M. Chen, and B. Liu, J. Am. Chem. Soc. 138, 36(2016).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(956) PDF downloads(450) Cited by()

Proportional views
Related

Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction

doi: 10.1063/1674-0068/31/cjcp1805127

Abstract: Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co3O4 electrocatalyst using a pyrolysis strategy for oxygen evolution reaction (OER). Morphological characterization confirmed the ultra-thin structure of nanosheet. Further, the existence of oxygen vacancies was obviously evidenced by the X-ray photoelectron spectroscopy and electron spin resonance spectroscopy. The increased surface area of Co3O4 ensures more exposed sites, whereas generated oxygen vacancies on Co3O4 surface create more active defects. The two scenarios were beneficial for accelerating the OER across the interface between the anode and electrolyte. As expected, the optimized Co3O4 nanosheets can catalyze the OER efficiently with a low overpotential of 310 mV at current density of 10 mA/cm2 and remarkable long-term stability in 1.0 mol/L KOH.

Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127
Citation: Gong Zhang, Jing-hong Li. Tailoring Oxygen Vacancy on Co3O4 Nanosheets with High Surface Area for Oxygen Evolution Reaction[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 517-522. doi: 10.1063/1674-0068/31/cjcp1805127
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return