Shan Zhou, Tung-Han Yang, Ming Zhao, Younan Xia. Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 370-374. doi: 10.1063/1674-0068/31/cjcp1805121
Citation: Shan Zhou, Tung-Han Yang, Ming Zhao, Younan Xia. Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 370-374. doi: 10.1063/1674-0068/31/cjcp1805121

Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis

doi: 10.1063/1674-0068/31/cjcp1805121
  • Received Date: 2018-05-29
  • In this letter, we report a quantitative analysis of how a Pt(Ⅱ) precursor is reduced to atoms at different temperatures for the formation of Pt nanocrystals with different morphologies and sizes. Our results suggest that in the early stage of a synthesis, the Pt(Ⅱ) precursor is reduced to atoms exclusively in the solution phase, followed by homogeneous nucleation to generate nuclei and then seeds. At a relatively low reaction temperature such as 22℃, the growth of the seeds is dominated by autocatalytic surface reduction that involves the adsorption and then reduction of the Pt(Ⅱ) precursor on the surface of the just-formed seeds. This particular growth pathway results in relatively large assemblies of Pt nanocrystals. When the reaction temperature is increased to 100℃, the dominant reduction pathway will be switched from surface to solution phase, producing much smaller assemblies of Pt nanocrystals. Our results also demonstrate that a similar trend applies to the seed-mediated growth of Pt nanocrystals in the presence of Pd nanocubes.
  • 加载中
  • [1] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed. 48, 60(2009).
    [2] Y. Xia, X. Xia, and H. C. Peng, J. Am. Chem. Soc. 137, 7947(2015).
    [3] Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, Angew. Chem. Int. Ed. 56, 60(2017).
    [4] L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, and Y. Xia, Science 349, 412(2015).
    [5] X. Wang, S. I. Choi, L. T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J. A. Herron, M. Mavrikakis, and Y. Xia, Nat. Commun. 6, 7594(2015).
    [6] C. K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L. I. Hung, G. A. Somorjai, and P. Yang, J. Am. Chem. Soc. 131, 5816(2009).
    [7] W. Chen, J. Ji, X. Feng, X. Duan, G. Qian, P. Li, X. Zhou, D. Chen, and W. Yuan, J. Am. Chem. Soc. 136, 16736(2014).
    [8] J. Chen, B. Lim, E. P. Lee, and Y. Xia, Nano Today 4, 81(2009).
    [9] Z. Peng and H. Yang, Nano Today 4, 143(2009).
    [10] X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, and Y. Xia, Nano Lett. 16, 1467(2016).
    [11] T. H. Yang, K. D. Gilroy, and Y. Xia, Chem. Sci. 8, 6730(2017).
    [12] T. H. Yang, H. C. Peng, S. Zhou, C. T. Lee, S. Bao, Y. H. Lee, J. M. Wu, and Y. Xia, Nano Lett. 17, 334(2017).
    [13] T. H. Yang, S. Zhou, K. D. Gilroy, L. Figueroa-Cosme, Y. H. Lee, J. M. Wu, and Y. Xia, Proc. Natl. Acad. Sci. USA 114, 13619(2017).
    [14] M. A. Watzky and R. G. Finke, J. Am. Chem. Soc. 119, 10382(1997).
    [15] C. Besson, E. E. Finney, and R. G. Finke, Chem. Mater. 17, 4925(2005).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(670) PDF downloads(592) Cited by()

Proportional views
Related

Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis

doi: 10.1063/1674-0068/31/cjcp1805121

Abstract: In this letter, we report a quantitative analysis of how a Pt(Ⅱ) precursor is reduced to atoms at different temperatures for the formation of Pt nanocrystals with different morphologies and sizes. Our results suggest that in the early stage of a synthesis, the Pt(Ⅱ) precursor is reduced to atoms exclusively in the solution phase, followed by homogeneous nucleation to generate nuclei and then seeds. At a relatively low reaction temperature such as 22℃, the growth of the seeds is dominated by autocatalytic surface reduction that involves the adsorption and then reduction of the Pt(Ⅱ) precursor on the surface of the just-formed seeds. This particular growth pathway results in relatively large assemblies of Pt nanocrystals. When the reaction temperature is increased to 100℃, the dominant reduction pathway will be switched from surface to solution phase, producing much smaller assemblies of Pt nanocrystals. Our results also demonstrate that a similar trend applies to the seed-mediated growth of Pt nanocrystals in the presence of Pd nanocubes.

Shan Zhou, Tung-Han Yang, Ming Zhao, Younan Xia. Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 370-374. doi: 10.1063/1674-0068/31/cjcp1805121
Citation: Shan Zhou, Tung-Han Yang, Ming Zhao, Younan Xia. Quantitative Analysis of the Reduction Kinetics of a Pt(Ⅱ) Precursor in the Context of Pt Nanocrystal Synthesis[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 370-374. doi: 10.1063/1674-0068/31/cjcp1805121
Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return