Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments†[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118
Citation: Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118

Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments

doi: 10.1063/1674-0068/31/cjcp1805118
More Information
  • Author Bio:

    Wenkai Zhang received his B.S. degree in Chemical Physics from University of Science and Technology of China (USTC, Class 9603) in 2001, and his Ph.D. degree in Physical Chemistry from the Institute of Chemistry, the Chinese Academy of Sciences under the direction of Professor Hong-fei Wang in 2007. Then he did postdoctoral research with Professor Haw Yang at University of California, Berkeley, and with Professor Kelly Gaffney at the PULSE Institute of Stanford University and the SLAC National Accelerator Laboratory, and with Professor Feng Gai at the University of Pennsylvania. He is currently a Professor and Director of Applied Optics Beijing Area Major Laboratory of Beijing Nonnal University. His research interests are primarily focused on the developments and applications of ultrafast laser and X-ray free electron laser spectroscopy

  • Corresponding author: Wen-kai Zhang, E-mail:wkzhang@bnu.edu.cn
  • Received Date: 2018-05-25
  • Accepted Date: 2018-07-08
  • Publish Date: 2018-08-27
  • Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotryptophan emits in the visible region and is the smallest blue fluorescent amino acid probe for biological applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole-4-carboxylate emits at 450 nm with a long fluorescence lifetime, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.

     

  • Part of the special issue for celebration of "the 60th Anniversary of University of Science and Technology of China and the 30th Anniversary of Chinese Journal of Chemical Physics"
  • loading
  • [1]
    J. Ma, I. M. Pazos, W. Zhang, R. M. Culik, and F. Gai, Annu. Rev. Phys. Chem. 66, 357(2015). doi: 10.1146/annurev-physchem-040214-121802
    [2]
    H. Kim and M. Cho, Chem. Rev. 113, 5817(2013). doi: 10.1021/cr3005185
    [3]
    E. A. Specht, E. Braselmann, and A. E. Palmer, Annu. Rev. Physiol. 79, 93(2017). doi: 10.1146/annurev-physiol-022516-034055
    [4]
    R. Adhikary, J. Zimmermann, and F. E. Romesberg, Chem. Rev. 117, 1927(2017). doi: 10.1021/acs.chemrev.6b00625
    [5]
    A. A. Bogan and K. S. Thorn, J. Mol. Biol. 280, 1(1998). doi: 10.1006/jmbi.1998.1843
    [6]
    C. H. Hsu, C. P. Chen, M. L. Jou, A. Y. L. Lee, Y. C. Lin, Y. P. Yu, W. T. Huang, and S. H. Wu, Nucleic Acids Res. 33, 4053(2005). doi: 10.1093/nar/gki725
    [7]
    G. J. Bartlett, C. T. Porter, N. Borkakoti, and J. M. Thornton, J. Mol. Biol. 324, 105(2002). doi: 10.1016/S0022-2836(02)01036-7
    [8]
    Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O'Halloran, Nat. Chem. Biol. 4, 107(2008). doi: 10.1038/nchembio.2007.57
    [9]
    C. A. Royer, Chem. Rev. 106, 1769(2006). doi: 10.1021/cr0404390
    [10]
    S. Lepthien, M. G. Hoesl, L. Merkel, and N. Budisa, Proc. Natl. Acad. Sci. USA 105, 16095(2008). doi: 10.1073/pnas.0802804105
    [11]
    P. Talukder, S. Chen, C. T. Liu, E. A. Baldwin, S. J. Benkovic, and S. M. Hecht, Bioorg. Med. Chem. 22, 5924(2014). doi: 10.1016/j.bmc.2014.09.015
    [12]
    A. V. Smirnov, D. S. English, R. L. Rich, J. Lane, L. Teyton, A. W. Schwabacher, S. Luo, R. W. Thornburg, and J. W. Petrich, J. Phys. Chem. B 101, 2758(1997). doi: 10.1021/jp9630232
    [13]
    P. Talukder, S. Chen, B. Roy, P. Yakovchuk, M. M. Spiering, M. P. Alam, M. M. Madathil, C. Bhattacharya, S. J. Benkovic, and S. M. Hecht, Biochemistry 54, 7457(2015). Biochemistry 54, 7457(2015). doi: 10.1021/acs.biochem.5b01085
    [14]
    B. N. Markiewicz, D. Mukherjee, T. Troxler, and F. Gai, J. Phys. Chem. B 120, 936(2016). doi: 10.1021/acs.jpcb.5b12233
    [15]
    M. R. Hilaire, I. A. Ahmed, C. W. Lin, H. Jo, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA 114, 6005(2017). doi: 10.1073/pnas.1705586114
    [16]
    M. R. Hilaire, D. Mukherjee, T. Troxler, and F. Gai, Chem. Phys. Lett. 685, 133(2017). doi: 10.1016/j.cplett.2017.07.038
    [17]
    W. Zhang, B. N. Markiewicz, R. S. Doerksen, A. B. Smith Ⅲ, and F. Gai, Phys. Chem. Chem. Phys. 18, 7027(2016). doi: 10.1039/C5CP04413H
    [18]
    J. M. Rodgers, R. M. Abaskharon, B. Ding, J. Chen, W. Zhang, and F. Gai, Phys. Chem. Chem. Phys. 19, 16144(2017). doi: 10.1039/C7CP02442H
    [19]
    B. N. Markiewicz, T. Lemmin, W. Zhang, I. A. Ahmed, H. Jo, G. Fiorin, T. Troxler, W. F. DeGrado, and F. Gai, Phys. Chem. Chem. Phys. 18, 28939(2016). doi: 10.1039/C6CP03426H
    [20]
    K. L. Koziol, P. J. Johnson, B. Stucki-Buchli, S. A. Waldauer, and P. Hamm, Curr. Opin. Struct. Biol. 34, 1(2015). http://www.sciencedirect.com/science/article/pii/S0959440X15000391
    [21]
    W. K. Zhang, Chin. J. Chem. Phys. 29, 1(2016). doi: 10.1063/1674-0068/29/cjcp1512246
    [22]
    M. You, L. Liu, and W. Zhang, Phys. Chem. Chem. Phys. 19, 19420(2017). doi: 10.1039/C7CP01867C
    [23]
    M. Maj, C. Ahn, D. Kossowska, K. Park, K. Kwak, H. Han, and M. Cho, Phys. Chem. Chem. Phys. 17, 11770(2015). doi: 10.1039/C5CP00454C
    [24]
    G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122, 4035(2018). doi: 10.1021/acs.jpcb.8b00887
    [25]
    S. Dutta, Y. L. Li, W. Rock, J. C. Houtman, A. Kohen, and C. M. Cheatum, J. Phys. Chem. B 116, 542(2012). doi: 10.1021/jp208677u
    [26]
    I. M. Pazos, A. Ghosh, M. J. Tucker, and F. Gai, Angew Chem. Int. Ed. Engl. 53, 6080(2014). doi: 10.1002/anie.201402011
    [27]
    M. J. Kamlet, C. Dickinson, and R. W. Taft, Chem. Phys. Lett. 77, 69(1981). doi: 10.1016/0009-2614(81)85602-3
    [28]
    M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, and R. W. Taft, J. Org. Chem. 48, 2877(1983). doi: 10.1021/jo00165a018
    [29]
    L. Chuntonov, I. M. Pazos, J. Ma, and F. Gai, J. Phys. Chem. B 119, 4512(2015). doi: 10.1021/acs.jpcb.5b00745
    [30]
    J. Braun, H. J. Neusser, and P. Hobza, J. Phys. Chem. A 107, 3918(2003). doi: 10.1021/jp027217v
    [31]
    Y. Geng, T. Takatani, E. G. Hohenstein, and C. D. Sherrill, J. Phys. Chem. A 114, 3576(2010). doi: 10.1021/jp9099495
    [32]
    T. V. Sravanthi and S. L. Manju, Eur. J. Pharm. Sci. 91, 1(2016). doi: 10.1016/j.ejps.2016.05.025
    [33]
    [34]
    X. Meng, T. Harricharran, and L. J. Juszczak, Photochem. Photobiol. 89, 40(2013). doi: 10.1111/j.1751-1097.2012.01219.x
    [35]
    E. P. Kirby and R. F. Steiner, J. Phys. Chem. 74, 4480(1970). doi: 10.1021/j100720a004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1012) PDF downloads(425) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return