Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118
Citation: Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118

Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments

doi: 10.1063/1674-0068/31/cjcp1805118
  • Received Date: 2018-05-25
  • Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotryptophan emits in the visible region and is the smallest blue fluorescent amino acid probe for biological applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole-4-carboxylate emits at 450 nm with a long fluorescence lifetime, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.
  • 加载中
  • [1] J. Ma, I. M. Pazos, W. Zhang, R. M. Culik, and F. Gai, Annu. Rev. Phys. Chem. 66, 357(2015).
    [2] H. Kim and M. Cho, Chem. Rev. 113, 5817(2013).
    [3] E. A. Specht, E. Braselmann, and A. E. Palmer, Annu. Rev. Physiol. 79, 93(2017).
    [4] R. Adhikary, J. Zimmermann, and F. E. Romesberg, Chem. Rev. 117, 1927(2017).
    [5] A. A. Bogan and K. S. Thorn, J. Mol. Biol. 280, 1(1998).
    [6] C. H. Hsu, C. P. Chen, M. L. Jou, A. Y. L. Lee, Y. C. Lin, Y. P. Yu, W. T. Huang, and S. H. Wu, Nucleic Acids Res. 33, 4053(2005).
    [7] G. J. Bartlett, C. T. Porter, N. Borkakoti, and J. M. Thornton, J. Mol. Biol. 324, 105(2002).
    [8] Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O'Halloran, Nat. Chem. Biol. 4, 107(2008).
    [9] C. A. Royer, Chem. Rev. 106, 1769(2006).
    [10] S. Lepthien, M. G. Hoesl, L. Merkel, and N. Budisa, Proc. Natl. Acad. Sci. USA 105, 16095(2008).
    [11] P. Talukder, S. Chen, C. T. Liu, E. A. Baldwin, S. J. Benkovic, and S. M. Hecht, Bioorg. Med. Chem. 22, 5924(2014).
    [12] A. V. Smirnov, D. S. English, R. L. Rich, J. Lane, L. Teyton, A. W. Schwabacher, S. Luo, R. W. Thornburg, and J. W. Petrich, J. Phys. Chem. B 101, 2758(1997).
    [13] P. Talukder, S. Chen, B. Roy, P. Yakovchuk, M. M. Spiering, M. P. Alam, M. M. Madathil, C. Bhattacharya, S. J. Benkovic, and S. M. Hecht, Biochemistry 54, 7457(2015). Biochemistry 54, 7457(2015).
    [14] B. N. Markiewicz, D. Mukherjee, T. Troxler, and F. Gai, J. Phys. Chem. B 120, 936(2016).
    [15] M. R. Hilaire, I. A. Ahmed, C. W. Lin, H. Jo, W. F. DeGrado, and F. Gai, Proc. Natl. Acad. Sci. USA 114, 6005(2017).
    [16] M. R. Hilaire, D. Mukherjee, T. Troxler, and F. Gai, Chem. Phys. Lett. 685, 133(2017).
    [17] W. Zhang, B. N. Markiewicz, R. S. Doerksen, A. B. Smith Ⅲ, and F. Gai, Phys. Chem. Chem. Phys. 18, 7027(2016).
    [18] J. M. Rodgers, R. M. Abaskharon, B. Ding, J. Chen, W. Zhang, and F. Gai, Phys. Chem. Chem. Phys. 19, 16144(2017).
    [19] B. N. Markiewicz, T. Lemmin, W. Zhang, I. A. Ahmed, H. Jo, G. Fiorin, T. Troxler, W. F. DeGrado, and F. Gai, Phys. Chem. Chem. Phys. 18, 28939(2016).
    [20] K. L. Koziol, P. J. Johnson, B. Stucki-Buchli, S. A. Waldauer, and P. Hamm, Curr. Opin. Struct. Biol. 34, 1(2015).
    [21] W. K. Zhang, Chin. J. Chem. Phys. 29, 1(2016).
    [22] M. You, L. Liu, and W. Zhang, Phys. Chem. Chem. Phys. 19, 19420(2017).
    [23] M. Maj, C. Ahn, D. Kossowska, K. Park, K. Kwak, H. Han, and M. Cho, Phys. Chem. Chem. Phys. 17, 11770(2015).
    [24] G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122, 4035(2018).
    [25] S. Dutta, Y. L. Li, W. Rock, J. C. Houtman, A. Kohen, and C. M. Cheatum, J. Phys. Chem. B 116, 542(2012).
    [26] I. M. Pazos, A. Ghosh, M. J. Tucker, and F. Gai, Angew Chem. Int. Ed. Engl. 53, 6080(2014).
    [27] M. J. Kamlet, C. Dickinson, and R. W. Taft, Chem. Phys. Lett. 77, 69(1981).
    [28] M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, and R. W. Taft, J. Org. Chem. 48, 2877(1983).
    [29] L. Chuntonov, I. M. Pazos, J. Ma, and F. Gai, J. Phys. Chem. B 119, 4512(2015).
    [30] J. Braun, H. J. Neusser, and P. Hobza, J. Phys. Chem. A 107, 3918(2003).
    [31] Y. Geng, T. Takatani, E. G. Hohenstein, and C. D. Sherrill, J. Phys. Chem. A 114, 3576(2010).
    [32] T. V. Sravanthi and S. L. Manju, Eur. J. Pharm. Sci. 91, 1(2016).
    [33] V. Sharma, P. Kumar, and D. Pathak, J. Heterocycl. Chem. 47, 491(2010).
    [34] X. Meng, T. Harricharran, and L. J. Juszczak, Photochem. Photobiol. 89, 40(2013).
    [35] E. P. Kirby and R. F. Steiner, J. Phys. Chem. 74, 4480(1970).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(828) PDF downloads(424) Cited by()

Proportional views
Related

Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments

doi: 10.1063/1674-0068/31/cjcp1805118

Abstract: Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotryptophan emits in the visible region and is the smallest blue fluorescent amino acid probe for biological applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole-4-carboxylate emits at 450 nm with a long fluorescence lifetime, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing esterderivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.

Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118
Citation: Xin-yue Huang, Min You, Guang-liu Ran, Hao-ran Fan, Wen-kai Zhang. Ester-Derivatized Indoles as Fluorescent and Infrared Probes for Hydration Environments[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 477-484. doi: 10.1063/1674-0068/31/cjcp1805118
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return