Qin-qin Yuan, Zheng Yang, Ren-zhong Li, Wesley J. Transue, Zhi-peng Li, Ling Jiang, Niranjan Govind, Christopher C. Cummins, Xue-Bin Wang. Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 463-470. doi: 10.1063/1674-0068/31/cjcp1805114
Citation: Qin-qin Yuan, Zheng Yang, Ren-zhong Li, Wesley J. Transue, Zhi-peng Li, Ling Jiang, Niranjan Govind, Christopher C. Cummins, Xue-Bin Wang. Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 463-470. doi: 10.1063/1674-0068/31/cjcp1805114

Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-

doi: 10.1063/1674-0068/31/cjcp1805114
  • Received Date: 2018-05-24
  • Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS-(A=C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelectron spectroscopy, velocity-map imaging (VMI) photoelectron spectroscopy, and quantum chemical calculations. The electron affinity (EA) and spin-orbit (SO) splitting of the APS· radical are determined from the photoelectron spectra and Franck-Condon factor simulations to be EA=(2.62±0.05) eV and SO splitting=(43±7) meV. VMI photoelectron images show strong and sharp peaks near the detachment threshold with an identical electron kinetic energy (eKE) of 17.9 meV at three different detachment wavelengths, which are therefore assigned to autodetachment from dipole-bound anion states. The B3LYP/6-31++G(d,p) calculations indicate APS· has a dipole moment of 3.31 Debye, large enough to support a dipole-bound electron.
  • 加载中
  • [1] I. Krummenacher and C. C. Cummins, Polyhedron 32, 10(2012).
    [2] F. F. Puschmann, D. Stein, D. Heift, C. Hendriksen, Z. A. Gal, H. F. Grützmacher, and H. Grtzmacher, Angew. Chem. Int. Ed. 50, 8420(2011).
    [3] A. R. Jupp and J. M. Goicoechea, Angew. Chem. Int. Ed. 52, 10064(2013).
    [4] A. M. Tondreau, Z. Benkö, J. R. Harmer, and H. Grützmacher, Chem. Sci. 5, 1545(2014).
    [5] D. Heift, Z. Benkö, H. Grützmacher, A. R. Jupp, and J. M. Goicoechea, Chem. Sci. 6, 4017(2015).
    [6] A. R. Jupp and J. M. Goicoechea, J. Am. Chem. Soc. 135, 19131(2013).
    [7] A. R. Jupp, G. Trott, É. Payen de la Garanderie, J. D. Holl, D. Carmichael, and J. M. Goicoechea, Chem. Eur. J. 21, 8015(2015).
    [8] A. Hinz, R. Labbow, C. Rennick, A. Schulz, and J. M. Goicoechea, Angew. Chem. Int. Ed. 56, 3911(2017).
    [9] D. Heift, Z. Benkö, and H. Grützmacher, Chem. Eur. J. 20, 11326(2014).
    [10] D. Heift, Z. Benkö, and H. Grützmacher, Dalton Trans. 43, 831(2014).
    [11] X. Chen, S. Alidori, F. F. Puschmann, G. SantisoQuinones, Z. Benkö, Z. Li, G. Becker, H. F. Grützmacher, and H. Grützmacher, Angew. Chem. Int. Ed. 53, 1641(2014).
    [12] T. P. Robinson and J. M. Goicoechea, Chem. Eur. J. 21, 5727(2015).
    [13] K. Nakajima, W. Liang, and Y. Nishibayashi, Org. Lett. 18, 5006(2016).
    [14] Christian Hering-Junghans and Eric Rivard, Angew. Chem. Int. Ed. 54, 10077(2015).
    [15] A. Velian and C. C. Cummins, Science 348, 1001(2015).
    [16] A. Velian and C. C. Cummins, J. Am. Chem. Soc. 134, 13978(2012).
    [17] A. Velian, M. Nava, M. Temprado, Y. Zhou, R. W. Field, and C. C. Cummins, J. Am. Chem. Soc. 136, 13586(2014).
    [18] A. Velian, W. J. Transue, and C. C. Cummins, Organometallics 34, 4644(2015).
    [19] W. J. Transue, A. Velian, M. Nava, M. A. MartinDrumel, C. C. Womack, J. Jiang, G. L. Hou, X. B. Wang, M. C. McCarthy, and R. W. Field, J. Am. Chem. Soc. 138, 6731(2016).
    [20] W. J. Transue, A. Velian, M. Nava, C. García-Iriepa, M. Temprado, and C. C. Cummins, J. Am. Chem. Soc. 139, 10822(2017).
    [21] G. L. Hou, B. Chen, W. J. Transue, D. A. Hrovat, C. C. Cummins, W. T. Borden, and X. B. Wang, J. Phys. Chem. A 120, 6228(2016).
    [22] G. L. Hou, B. Chen, W. J. Transue, D. A. Hrovat, C. C. Cummins, W. T. Borden, and X. B. Wang, Chem. Sci. 7, 4667(2016).
    [23] C. Visscher, K. Lodders, and B. Fegley Jr., Astrophys. J. 648, 1181(2006).
    [24] S. B. Yaghlane, J. S. Francisco, and M. Hochlaf, J. Chem. Phys. 136, 244309(2012).
    [25] K. Dressler and E. Miescher, Proc. Phys. Soc. Sect. A 68, 542(1955).
    [26] N. Narasimham and T. Subramanian, J. Mol. Spectrosc. 29, 294(1969).
    [27] Z. Mielke, G. D. Brabson, and L. Andrews, J. Phys. Chem. 95, 75(1991).
    [28] C. Xu, E. de Beer, and D. M. Neumark, J. Chem. Phys. 104, 2749(1996).
    [29] X. B. Wang and L. S. Wang, Rev. Sci. Instrum. 79, 073108(2008).
    [30] G. L. Hou, B. Chen, W. J. Transue, Z. Yang, H. R. Grützmacher, M. Driess, C. C. Cummins, W. T. Borden, and X. B. Wang, J. Am. Chem. Soc. 139, 8922(2017).
    [31] D. Hanstorp and M. Gustafsson, J. Phys. B:At. Mol. Opt. Phys. 25, 1773(1992).
    [32] X. B. Wang and L. S. Wang, J. Chem. Phys. 111, 4497(1999).
    [33] B. Dick, Phys. Chem. Chem. Phys. 16, 570(2014).
    [34] J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378(2011).
    [35] C. Blondel, P. Cacciani, C. Delsart, and R. Trainham, Phys. Rev. A 40, 3698(1989).
    [36] A. D. Becke, Phys. Rev. A 38, 3098(1988).
    [37] A. D. Becke, J. Chem. Phys. 98, 5648(1993).
    [38] G. Petersson and M. A. Al-Laham, J. Chem. Phys. 94, 6081(1991).
    [39] J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615(2008).
    [40] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A02, Wallingford, CT:Gaussian Inc., (2009)
    [41] V. A. Mozhayskiy and A. I. Krylov, ezSpectrum, version 3.0, Los Angeles:University of Southern alifornia. http://iopenshell.usc.edu/downloads.
    [42] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, and T. L. Windus, Comput. Phys. Commun. 181, 1477 (2010).
    [43] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
    [44] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
    [45] B. Finney, A. O. Mitrushchenkov, J. S. Francisco, and K. A. Peterson, J. Chem. Phys. 145, 224303 (2016).
    [46] O. H. Crawford, Mol. Phys. 20, 585 (1971).
    [47] C. Desfrançois, H. Abdoul-Carime, and J. P. Schermann, Int. J. Mod. Phys. B 10, 1339 (1996).
    [48] J. H. Hendricks, H. L. de Clercq, S. A. Lyapustina, and K. H. Bowen Jr., J. Chem. Phys. 107, 2962 (1997).
    [49] A. Buytendyk, A. Buonaugurio, S. J. Xu, J. Nilles, K. Bowen, N. Kirnosov, and L. Adamowicz, J. Chem. Phys. 145, 024301 (2016).
    [50] J. Simons, J. Am. Chem. Soc. 103, 3971 (1981).
    [51] H. T. Liu, C. G. Ning, D. L. Huang, P. D. Dau, and L. S. Wang, Angew. Chem. Int. Ed. 125, 9146 (2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(837) PDF downloads(359) Cited by()

Proportional views
Related

Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-

doi: 10.1063/1674-0068/31/cjcp1805114

Abstract: Gaseous dibenzo-7-phosphanorbornadiene P-sulfide anions APS-(A=C14H10 or anthracene) were generated via electrospray ionization, and characterized by magnetic-bottle photoelectron spectroscopy, velocity-map imaging (VMI) photoelectron spectroscopy, and quantum chemical calculations. The electron affinity (EA) and spin-orbit (SO) splitting of the APS· radical are determined from the photoelectron spectra and Franck-Condon factor simulations to be EA=(2.62±0.05) eV and SO splitting=(43±7) meV. VMI photoelectron images show strong and sharp peaks near the detachment threshold with an identical electron kinetic energy (eKE) of 17.9 meV at three different detachment wavelengths, which are therefore assigned to autodetachment from dipole-bound anion states. The B3LYP/6-31++G(d,p) calculations indicate APS· has a dipole moment of 3.31 Debye, large enough to support a dipole-bound electron.

Qin-qin Yuan, Zheng Yang, Ren-zhong Li, Wesley J. Transue, Zhi-peng Li, Ling Jiang, Niranjan Govind, Christopher C. Cummins, Xue-Bin Wang. Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 463-470. doi: 10.1063/1674-0068/31/cjcp1805114
Citation: Qin-qin Yuan, Zheng Yang, Ren-zhong Li, Wesley J. Transue, Zhi-peng Li, Ling Jiang, Niranjan Govind, Christopher C. Cummins, Xue-Bin Wang. Magnetic-Bottle and Velocity-Map Imaging Photoelectron Spectroscopy of APS- (A=C14H10 or Anthracene): Electron Structure, Spin-Orbit Coupling of APS·, and Dipole-Bound State of APS-[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 463-470. doi: 10.1063/1674-0068/31/cjcp1805114
Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return