Li-xue Jiang, Xiao-na Li, Zi-yu Li, Hai-fang Li, Sheng-gui He. H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 457-462. doi: 10.1063/1674-0068/31/cjcp1805107
Citation: Li-xue Jiang, Xiao-na Li, Zi-yu Li, Hai-fang Li, Sheng-gui He. H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 457-462. doi: 10.1063/1674-0068/31/cjcp1805107

H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions

doi: 10.1063/1674-0068/31/cjcp1805107
  • Received Date: 2018-05-15
  • Dissociation of molecular hydrogen (H2) is extensively studied to understand the mechanism of hydrogenation reactions. In this study, H2 dissociation by Au1-doped closed-shell titanium oxide cluster anions AuTi3O7- and AuTi3O8- has been identified by mass spectrometry and quantum chemistry calculations. The clusters were generated by laser ablation and massselected to react with H2 in an ion trap reactor. In the reaction of AuTi3O8- with H2, the ion pair Au+-O22- rather than Au+-O2- is the active site to promote H2 dissociation. This finding is in contrast with the previous result that the lattice oxygen is usually the reactive oxygen species in H2 dissociation. The higher reactivity of the peroxide species is further supported by frontier molecular orbital analysis. This study provides new insights into gold catalysis involving H2 activation and dissociation.
  • 加载中
  • [1] M. Boronat and A. Corma, Langmuir 26, 16607(2010).
    [2] Z. P. Liu, C. M. Wang, and K. N. Fan, Angew. Chem. Int. Ed. 45, 6865(2006).
    [3] X. Zhang, H. Shi, and B. Q. Xu, Angew. Chem. Int. Ed. 44, 7132(2005).
    [4] C. Mohr, H. Hofmeister, J. Radnik, and P. Claus, J. Am. Chem. Soc. 125, 1905(2003).
    [5] P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, and G. J. Hutchings, Chem. Commun. 2058(2002).
    [6] G. C. Bond and P. B. Wells, Adv. Catal. 15, 91(1964).
    [7] F. Meemken and A. Baiker, Chem. Rev. 117, 11522(2017).
    [8] I. X. Green, W. Tang, M. Neurock, and J. T. Yates Jr., Acc. Chem. Res. 47, 805(2014).
    [9] K. Sun, M. Kohyama, S. Tanaka, and S. Takeda, J. Phys. Chem. C 118, 1611(2014).
    [10] D. Widmann, E. Hocking, and R. J. Behm, J. Catal. 317, 272(2014).
    [11] I. X. Green, W. Tang, M. Neurock, and J. T. Yates Jr., Angew. Chem. Int. Ed. 50, 10186(2011).
    [12] T. Fujitani, I. Nakamura, T. Akita, M. Okumura, and M. Haruta, Angew. Chem. Int. Ed. 48, 9515(2009).
    [13] X. Y. Liu, A. Q. Wang, T. Zhang, and C. Y. Mou, Nano Today 8, 403(2013).
    [14] K. R. Asmis, Phys. Chem. Chem. Phys. 14, 9270(2012).
    [15] S. M. Lang and T. M. Bernhardt, Phys. Chem. Chem. Phys. 14, 9255(2012).
    [16] P. J. Roach, W. H. Woodward, A. W. Castleman Jr., A. C. Reber, and S. N. Khanna, Science 323, 492(2009).
    [17] C. Chi, H. Qu, L. Meng, F. Kong, M. Luo, and M. Zhou, Angew. Chem. Int. Ed. 56, 14096(2017).
    [18] R. Burgert, H. Schnockel, A. Grubisic, X. Li, S. T. Stokes, K. H. Bowen, G. F. Gantefor, B. Kiran, and P. Jena, Science 319, 438(2008).
    [19] H. Schwarz, S. Shaik, and J. Li, J. Am. Chem. Soc. 139, 17201(2017).
    [20] M. Krstic, Q. Jin, G. N. Khairallah, R. A. J. O'Hair, and V. Bonacic-Koutecky, Chemcatchem 10, 1173(2018).
    [21] J. H. Meng and S. G. He, J. Phys. Chem. Lett. 5, 3890(2014).
    [22] L. X. Jiang, X. N. Li, H. F. Li, Z. X. Zhou, and S. G. He, Chem. Asian J. 11, 2730(2016).
    [23] X. H. Zhou, Z. Y. Li, T. M. Ma, and S. G. He, J. Phys. Chem. C 120, 10452(2016).
    [24] Y. Zhang, Z. Y. Li, Y. X. Zhao, H. F. Li, X. L. Ding, H. Y. Zhang, and S. G. He, J. Phys. Chem. A 121, 4069(2017).
    [25] X. P. Zou, Z. Y. Li, X. N. Li, L. N. Wang, H. F. Li, T. M. Ma, and S. G. He, Top. Catal. 61, 28(2018).
    [26] X. N. Li, Z. Y. Li, H. F. Li, and S. G. He, Chem. Eur. J. 22, 9024(2016).
    [27] Y. X. Zhao, X. N. Li, Z. Yuan, Q. Y. Liu, Q. Shi, and S. G. He, Chem. Sci. 7, 4730(2016).
    [28] Z. Y. Li, H. F. Li, Y. X. Zhao, and S. G. He, J. Am. Chem. Soc. 138, 9437(2016).
    [29] L. N. Wang, Z. Y. Li, Q. Y. Liu, J. H. Meng, S. G. He, and T. M. Ma, Angew. Chem. Int. Ed. 54, 11720(2015).
    [30] X. N. Li, Z. Yuan, and S. G. He, J. Am. Chem. Soc. 136, 3617(2014).
    [31] H. Himeno, K. Miyajima, T. Yasuike, and F. Mafuné, J. Phys. Chem. A 115, 11479(2011).
    [32] Z. Yuan, X. N. Li, and S. G. He, J. Phys. Chem. Lett. 5, 1585(2014).
    [33] S. G. Ard, J. J. Melko, O. Martinez Jr., V. G. Ushakov, A. Li, R. S. Johnson, N. S. Shuman, H. Guo, J. Troe, and A. A. Viggiano, J. Phys. Chem. A 118, 6789(2014).
    [34] M. Zhou, C. Wang, J. Zhuang, Y. Zhao, and X. Zheng, J. Phys. Chem. A 115, 39(2011).
    [35] M. Zhou, C. Wang, Z. H. Li, J. Zhuang, Y. Zhao, X. Zheng, and K. Fan, Angew. Chem. Int. Ed. 49, 7757(2010).
    [36] M. F. Ryan, A. Fiedler, D. Schröder, and H. Schwarz, J. Am. Chem. Soc. 117, 2033(1995).
    [37] D. E. Clemmer, N. Aristov, and P. B. Armentrout, J. Phys. Chem. 97, 544(1993).
    [38] K. K. Irikura and J. L. Beauchamp, J. Am. Chem. Soc. 111, 75(1989).
    [39] Z. Yuan, Y. X. Zhao, X. N. Li, and S. G. He, Int. J. Mass Spectrom. 354-355, 105(2013).
    [40] Y. X. Zhao, Q. Y. Liu, M. Q. Zhang, and S. G. He, Dalton Trans. 45, 11471(2016).
    [41] X. N. Wu, B. Xu, J. H. Meng, and S. G. He, Int. J. Mass Spectrom. 310, 57(2012).
    [42] Z. Yuan, Z. Y. Li, Z. X. Zhou, Q. Y. Liu, Y. X. Zhao, and S. G. He, J. Phys. Chem. C 118, 14967(2014).
    [43] X. P. Zou, L. N. Wang, X. N. Li, Q. Y. Liu, Y. X. Zhao, T. M. Ma, and S. G. He, Angew. Chem. Int. Ed. 57, 10989(2018).
    [44] G. Kummerlöwe and M. K. Beyer, Int. J. Mass Spectrom. 244, 84(2005).
    [45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian 09, Revision A.1, Wallingford, CT:Gaussian, Inc., (2009).
    [46] A. Schafer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829(1994).
    [47] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, and H. Preuß, Theor. Chim. Acta 77, 123(1990).
    [48] H. B. Schlegel, J. Comput. Chem. 3, 214(1982).
    [49] C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 90, 2154(1989).
    [50] C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523(1990).
    [51] R. Kretschmer, M. Schlangen, and H. Schwarz, Angew. Chem. Int. Ed. 52, 6097(2013).
    [52] G. Gioumousis and D. P. Stevenson, J. Chem. Phys. 29, 294(1958).
    [53] J. I. F. Steinfeld, J. S. Hase, W. L., 2nd ed., New Jersey:Prentice-Hall, (1999).
    [54] G. Lu, P. Zhang, D. Q. Sun, L. Wang, K. B. Zhou, Z. X. Wang, and G. C. Guo, Chem. Sci. 5, 1082(2014).
    [55] B. Yang, X. M. Cao, X. Q. Gong, and P. Hu, Phys. Chem. Chem. Phys. 14, 3741(2012).
    [56] A. Corma, M. Boronat, S. Gonzalez, and F. Illas, Chem. Commun. 3371(2007).
    [57] B. Yoon, H. Häkkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307, 403(2005).
    [58] N. K. Jena, K. R. S. Chandrakumar, and S. K. Ghosh, J. Phys. Chem. C 113, 17885(2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(515) PDF downloads(340) Cited by()

Proportional views
Related

H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions

doi: 10.1063/1674-0068/31/cjcp1805107

Abstract: Dissociation of molecular hydrogen (H2) is extensively studied to understand the mechanism of hydrogenation reactions. In this study, H2 dissociation by Au1-doped closed-shell titanium oxide cluster anions AuTi3O7- and AuTi3O8- has been identified by mass spectrometry and quantum chemistry calculations. The clusters were generated by laser ablation and massselected to react with H2 in an ion trap reactor. In the reaction of AuTi3O8- with H2, the ion pair Au+-O22- rather than Au+-O2- is the active site to promote H2 dissociation. This finding is in contrast with the previous result that the lattice oxygen is usually the reactive oxygen species in H2 dissociation. The higher reactivity of the peroxide species is further supported by frontier molecular orbital analysis. This study provides new insights into gold catalysis involving H2 activation and dissociation.

Li-xue Jiang, Xiao-na Li, Zi-yu Li, Hai-fang Li, Sheng-gui He. H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 457-462. doi: 10.1063/1674-0068/31/cjcp1805107
Citation: Li-xue Jiang, Xiao-na Li, Zi-yu Li, Hai-fang Li, Sheng-gui He. H2 Dissociation by Au1-Doped Closed-Shell Titanium Oxide Cluster Anions[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 457-462. doi: 10.1063/1674-0068/31/cjcp1805107
Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return