Yi Peng, Eduardo Y. Hirata, Wanzhang Pan, Limei Chen, Jia En Lu, Shaowei Chen. Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 433-438. doi: 10.1063/1674-0068/31/cjcp1804073
Citation: Yi Peng, Eduardo Y. Hirata, Wanzhang Pan, Limei Chen, Jia En Lu, Shaowei Chen. Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 433-438. doi: 10.1063/1674-0068/31/cjcp1804073

Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons

doi: 10.1063/1674-0068/31/cjcp1804073
  • Received Date: 2018-04-19
  • Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated metal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was enhanced with the increase of the number of d electrons in the same period with palladium being an exception.
  • 加载中
  • [1] R. W. Murray, Chem. Rev. 108, 2688(2008).
    [2] R. Mout, D. F. Moyano, S. Rana, and V. M. Rotello, Chem. Soc. Rev. 41. 2539(2012).
    [3] Y. Wang, X. K. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Hakkinen, B. K. Teo, Q. M. Wang, and N. Zheng, J. Am. Chem. Soc. 138, 3278(2016).
    [4] D. J. Gavia and Y. S. Shon, Chemcatchem 7, 892(2015).
    [5] H. Hakkinen, Nat. Chem. 4, 443(2012).
    [6] K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Chem. Rev. 112, 2739(2012).
    [7] P. G. Hu, L. M. Chen, X. W. Kang, and S. W. Chen, Acc. Chem. Res. 49, 2251(2016).
    [8] L. M. Chen, P. G. Hu, C. P. Deming, W. Li, L. G. Li, and S. W. Chen, J. Phys. Chem. C 119, 15449(2015).
    [9] L. M. Chen, Y. Song, P. G. Hu, C. P. Deming, Y. Guo, and S. W. Chen, Phys. Chem. Chem. Phys. 16, 18736(2014).
    [10] C. P. Deming, X. W. Kang, K. Liu, and S. W. Chen, Sensors Actuat. B-Chem. 194, 319(2014).
    [11] X. W. Kang, N. B. Zuckerman, J. P. Konopelski, and S. W. Chen, J. Am. Chem. Soc. 134, 1412(2012).
    [12] X. W. Kang, N. B. Zuckerman, J. P. Konopelski, and S. W. Chen, Angew. Chem. Int. Edit. 49, 9496(2010).
    [13] P. G. Hu, L. M. Chen, C. P. Deming, L. W. Bonny, H. W. Lee, and S. W. Chen, Chem. Commun. 52, 11631(2016).
    [14] P. Maity, H. Tsunoyama, M. Yamauchi, S. Xie, and T. Tsukuda, J. Am. Chem. Soc. 133, 20123(2011).
    [15] H. Yamamoto, P. Maity, R. Takahata, S. Yamazoe, K. Koyasu, W. Kurashige, Y. Negishi, and T. Tsukuda, J. Phys. Chem. C 121, 10936(2017).
    [16] Y. Wang, H. Su, C. Xu, G. Li, L. Gell, S. Lin, Z. Tang, H. Hakkinen, and N. Zheng, J. Am. Chem. Soc. 137, 4324(2015).
    [17] P. G. Hu, L. M. Chen, C. P. Deming, X. W. Kang, and S. W. Chen, Angew. Chem. Int. Edit. 55, 1455(2016).
    [18] C. P. Deming, A. Zhao, Y. Song, K. Liu, M. M. Khan, V. M. Yates, and S. W. Chen, Chemelectrochem 2, 1719(2015).
    [19] K. Liu, Y. Song, and S. W. Chen, J. Power Sources 268, 469(2014).
    [20] P. G. Hu, Y. Song, L. M. Chen, and S. W. Chen, Nanoscale 7, 9627(2015).
    [21] Y. Wang, J. W. Ren, K. Deng, L. L. Gui, and Y. Q. Tang, Chem. Mater. 12, 1622(2000).
    [22] H. H. Ye, Q. X. Wang, M. Catalano, N. Lu, J. Vermeylen, M. J. Kim, Y. Z. Liu, Y. G. Sun, and X. H. Xia, Nano Lett. 16, 2812(2016).
    [23] A. J. Biacchi and R. E. Schaak, ACS Nano 5, 8089(2011).
    [24] X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, Nature 437, 121(2005).
    [25] D. R. Lide, CRC Handbook of Chemistry and Physics:a Ready-Reference Book of Chemical and Physical Data, 85th Edn., Boca Raton:Fla CRC Press, (2004).
    [26] S. W. Chen, A. C. Templeton, and R. W. Murray, Langmuir 16, 3543(2000).
    [27] C. D. Wanger, W. M. Riggs, L. E. Davis, M. J. F, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, Minnesota, USA:PerkinElmer Corp., Physical Electronics Division, (1979).
    [28] F. Zhang, L. Huang, J. Zou, J. Yan, J. Zhu, X. Kang, and S. Chen, J. Nanopart. Res. 19, 308(2017).
    [29] A. A. Khassin, T. M. Yurieva, V. V. Kaichev, V. I. Bukhtiyarov, A. A. Budneva, E. A. Paukshtis, and V. N. Parmon, J. Molec. Catal. A:Chem. 175, 189(2001).
    [30] K. Liu, X. W. Kang, Z. Y. Zhou, Y. Song, L. J. Lee, D. Tian, and S. W. Chen, J. Electroanal. Chem. 688, 143(2013).
    [31] C. Bianchini, M. Peruzzini, A. Vacca, and F. Zanobini, Organometallics 10, 3697(1991).
    [32] Y. Wakatsuki, N. Koga, H. Yamazaki, and K. Morokuma, J. Am. Chem. Soc. 116, 8105(1994).
    [33] C. Slugovc, V. N. Sapunov, P. Wiede, K. Mereiter, R. Schmid, and K. Kirchner, J. Chem. Soc. Dalton Trans. 4209(1997).
    [34] Y. Wakatsuki, J. Organomet. Chem. 689, 4092(2004).
    [35] H. Braunschweig, Q. Ye, A. Vargas, R. D. Dewhurst, K. Radacki, and A. Damme, Nat. Chem. 4, 563(2012).
    [36] W. Chen, S. Pradhan, and S. W. Chen, Nanoscale 3, 2294(2011).
    [37] P. Hu, L. Chen, C. P. Deming, X. Kang, and S. Chen, Angew. Chem. Int. Edit. 55, 1455(2016).
    [38] G. Mie, Ann Phys-Berlin 25, 377(1908).
    [39] S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209(2006).
    [40] P. G. Hu, L. M. Chen, C. P. Deming, J. E. Lu, L. W. Bonny, and S. W. Chen, Nanoscale 8, 12013(2016).
    [41] W. Chen, N. B. Zuckerman, X. W. Kang, D. Ghosh, J. P. Konopelski, and S. W. Chen, J. Phys. Chem. C 114, 18146(2010).
    [42] H. K. Black, D. H. S. Horn, and B. C. L. Weedon, J. Chem. Soc. 1704(1954).
    [43] R. Warta and H. Sixl, J Chem Phys 88, 95(1988).
    [44] N. L. Abbott and G. M. Whitesides, Langmuir 10, 1493(1994).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(581) PDF downloads(284) Cited by()

Proportional views
Related

Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons

doi: 10.1063/1674-0068/31/cjcp1804073

Abstract: Intraparticle charge delocalization occurs when metal nanoparticles are functionalized with organic capping ligands through conjugated metal-ligand interfacial bonds. In this study, metal nanoparticles of 5d metals (Ir, Pt, and Au) and 4d metals (Ru, Rh, and Pd) were prepared and capped with ethynylphenylacetylene and the impacts of the number of metal d electrons on the nanoparticle optoelectronic properties were examined. Both FTIR and photoluminescence measurements indicate that intraparticle charge delocalization was enhanced with the increase of the number of d electrons in the same period with palladium being an exception.

Yi Peng, Eduardo Y. Hirata, Wanzhang Pan, Limei Chen, Jia En Lu, Shaowei Chen. Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 433-438. doi: 10.1063/1674-0068/31/cjcp1804073
Citation: Yi Peng, Eduardo Y. Hirata, Wanzhang Pan, Limei Chen, Jia En Lu, Shaowei Chen. Intraparticle Charge Delocalization through Conjugated Metal-Ligand Interfacial Bonds: Effects of Metal d Electrons[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 433-438. doi: 10.1063/1674-0068/31/cjcp1804073
Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return