Jun-xiang Zuo, Xi-xi Hu, Dai-qian Xie. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 123-134. doi: 10.1063/1674-0068/31/cjcp1804060
Citation: Jun-xiang Zuo, Xi-xi Hu, Dai-qian Xie. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 123-134. doi: 10.1063/1674-0068/31/cjcp1804060

Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems

doi: 10.1063/1674-0068/31/cjcp1804060
  • Received Date: 2018-04-04
  • Rev Recd Date: 2018-04-21
  • Complex-forming reactions widely exist in gas-phase chemical reactions.Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered.The complex-forming reactions usually have small or no barrier in the entrance channel,which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions.Theoretically,quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier.However,it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels.This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems,HO2 and HO3,which are significant in combustion,atmospheric,and interstellar chemistry.We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.
  • 加载中
  • [1] G. C. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4642(1976).
    [2] G. C. Schatz, Annu. Rev. Phys. Chem. 39, 317(1988).
    [3] S. C. Althorpe and D. C. Clary, Annu. Rev. Phys. Chem. 54, 493(2003).
    [4] S. C. Althorpe, F. Fernándezalonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature 416, 67(2002).
    [5] S. A. Harich, D. X. Dai, C. C. Wang, X. M. Yang, S. D. Chao, and R. T. Skodje, Nature 419, 281(2002).
    [6] M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, and M. Gustafsson, Science 311, 1440(2006).
    [7] D. C. Clary, Science 321, 789(2008).
    [8] W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D. H. Zhang, Science 327, 1501(2010).
    [9] Z. Sun, L. Liu, S. Y. Lin, R. Schinke, H. Guo, and D. H. Zhang, Proc. Nat. Acad. Sci. USA 107, 555(2010).
    [10] T. Yang, J. Chen, L. Huang, T. Wang, C. Xiao, Z. Sun, D. Dai, X. Yang, and D. H. Zhang, Science 347, 60(2015).
    [11] X. Hu, L. Zhou, and D. Xie, WIRES Comput. Mol. Sci. 8, e1350(2018).
    [12] T. Yang, L. Huang, Y. Xie, T. Wang, C. Xiao, Z. Sun, D. Dai, M. Chen, D. H. Zhang, and X. Yang, Chin. J. Chem. Phys. 28, 471(2015).
    [13] X. Wang, W. Dong, C. Xiao, L. Che, Z. Ren, D. Dai, X. Wang, P. Casavecchia, X. Yang, B. Jiang, D. Xie, Z. Sun, S. Y. Lee, D. H. Zhang, H. J. Werner, and M. H. Alexander, Science 322, 573(2008).
    [14] C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, X. Xu, D. H. Zhang, and X. Yang, Science 333, 440(2011).
    [15] H. Guo, Int. Rev. Phys. Chem. 31, 1(2012).
    [16] K. W. Jucks, D. G. Johnson, K. V. Chance, W. A. Traub, J. J. Margitan, G. B. Osterman, R. J. Salawitch, and Y. Sasano, Geophys. Res. Lett. 25, 3935(1998).
    [17] M. E. Summers, R. R. Conway, D. E. Siskind, M. H. Stevens, D. Offermann, M. Riese, P. Preusse, D. F. Strobel, and J. M. Russell, Science 277, 1967(1997).
    [18] P. Crutzen, Science 277, 1951(1997).
    [19] J. A. Miller, R. J. K. And, and C. K. Westbrook, Annu. Rev. Phys. Chem. 41, 345(1990).
    [20] I. W. M. Smith, E. Herbst, and Q. Chang, Mon. Not. R. Astron. Soc. 350, 323(2004).
    [21] C. F. Melius and R. J. Blint, Chem. Phys. Lett. 64, 183(1979).
    [22] M. R. Pastrana, L. A. M. Quintales, J. Brandao, and A. J. C. Varandas, J. Phys. Chem. 92, 4552(1990).
    [23] B. Kendrick and R. T. Pack, J. Chem. Phys. 102, 1994(1995).
    [24] J. Troe and V. G. Ushakov, J. Chem. Phys. 115, 3621(2001).
    [25] A. J. Dobbyn, M. Stumpf, H. M. Keller, and R. Schinke, J. Chem. Phys. 103, 9947(1995).
    [26] R. Schinke, H. M. Keller, H. Flothmann, M. Stumpf, C. Beck, D. H. Mordaunt, A. J. Dobbyn, S. A. Rice, R. A. Marcus, J. Troe, D. M. Neumark, and M. E. Kellman, in Chemical Reactions and Their Control on the Femtosecond Time Scale Xxth Solvay Conference on Chemistry, P. Gaspard and I. Burghardt Eds., 745(1997).
    [27] A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. 108, 5404(1998).
    [28] L. B. Harding, A. I. Maergoiz, J. Troe, and V. G. Ushakov, J. Chem. Phys. 113, 11019(2000).
    [29] S. Y. Lin, D. Xie, and H. Guo, J. Chem. Phys. 125, 091103(2006).
    [30] C. Xu, B. Jiang, D. Xie, S. C. Farantos, S. Y. Lin, and H. Guo, J. Phys. Chem. A 111, 10353(2007).
    [31] C. Xu, D. Xie, D. H. Zhang, S. Y. Lin, and H. Guo, J. Chem. Phys. 122, 244305(2005).
    [32] C. Xu, D. Xie, P. Honvault, S. Y. Lin, and H. Guo, J. Chem. Phys. 127, 024304(2007).
    [33] J. A. Miller, J. Chem. Phys. 74, 5120(1981).
    [34] A. J. C. Varandas, J. Brandão, and M. R. Pastrana, J. Chem. Phys. 96, 5137(1992).
    [35] A. J. C. Varandas, J. Chem. Phys. 99, 1076(1993).
    [36] C. Y. Yang and S. J. Klippenstein, J. Chem. Phys. 103, 7287(1995).
    [37] J. A. Miller and B. C. Garrett, Int. J. Chem. Kinet. 29, 275(1997).
    [38] J. A. Miller and S. J. Klippenstein, Int. J. Chem. Kinet. 31, 753(1999).
    [39] G. Lendvay, D. Xie, and H. Guo, Chem. Phys. 349, 181(2008).
    [40] S. Y. Lin, E. J. Rackham, and H. Guo, J. Phys. Chem. A 110, 1534(2006).
    [41] T. González-Lezana, Int. Rev. Phys. Chem. 26, 29(2007).
    [42] P. Bargueno, T. Gonzalez-Lezana, P. Larrégaray, L. Bonnet, and J. Claude Rayez, Phys. Chem. Chem. Phys. 9, 1127(2007).
    [43] P. Bargueño, T. González-Lezana, P. Larrégaray, L. Bonnet, J. C. Rayez, M. Hankel, S. C. Smith, and A. J. H. M. Meijer, J. Chem. Phys. 128, 244308(2008).
    [44] Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, J. Am. Chem. Soc. 130, 14962(2008).
    [45] D. Carty, A. Goddard, S. P. K. Köhler, I. R. Sims, and I. W. M. Smith, J. Phys. Chem. A 110, 3101(2006).
    [46] J. Ma, H. Guo, C. Xie, A. Li, and D. Xie, Phys. Chem. Chem. Phys. 13, 8407(2011).
    [47] J. A. Miller, J. Chem. Phys. 84, 6170(1986).
    [48] L. A. M. Quintales, A. J. C. Varandas, and J. M. Alvarino, J. Phys. Chem. 92, 4552(1988).
    [49] J. Davidsson and G. Nyman, J. Chem. Phys. 92, 2407(1990).
    [50] G. Nyman and J. Davidsson, J. Chem. Phys. 92, 2415(1990).
    [51] A. I. Maergoiz, E. E. Nikitin, J. Troe, and V. G. Ushakov, J. Chem. Phys. 108, 5265(1998).
    [52] L. B. Harding, J. Troe, and V. G. Ushakov, Phys. Chem. Chem. Phys. 2, 631(2000).
    [53] M. Jorfi, P. Honvault, P. Halvick, S. Y. Lin, and H. Guo, Chem. Phys. Lett. 462, 53(2008).
    [54] M. Jorfi, P. Honvault, P. Bargueño, T. GonzálezLezana, P. Larrégaray, L. Bonnet, and P. Halvick, J. Chem. Phys. 130, 184301(2009).
    [55] P. Honvault, S. Y. Lin, D. Xie, and H. Guo, J. Phys. Chem. A 111, 5349(2007).
    [56] R. T. Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 99, 9310(1993).
    [57] R. T. Pack, E. A. Butcher, and G. A. Parker, J. Chem. Phys. 102, 5998(1995).
    [58] D. H. Zhang and J. Z. H. Zhang, J. Chem. Phys. 101, 3671(1994).
    [59] S. Y. Lin, H. Guo, P. Honvault, and D. Xie, J. Phys. Chem. B 110, 23641(2006).
    [60] M. Hankel, S. C. Smith, and A. J. H. M. Meijer, J. Chem. Phys. 127, 064316(2007).
    [61] G. Quéméner, B. K. Kendrick, and N. Balakrishnan, J. Chem. Phys. 132, 014302(2010).
    [62] A. J. H. M. Meijer and E. M. Goldfield, J. Chem. Phys. 110, 870(1999).
    [63] E. M. Goldfield and A. J. H. M. Meijer, J. Chem. Phys. 113, 11055(2000).
    [64] A. J. H. M. Meijer and E. M. Goldfield, Phys. Chem. Chem. Phys. 3, 2811(2001).
    [65] H. Zhang and S. C. Smith, J. Chem. Phys. 118, 10042(2003).
    [66] H. Zhang and S. C. Smith, J. Chem. Phys. 120, 9583(2004).
    [67] H. Zhang and S. C. Smith, J. Chem. Phys. 123, 014308(2005).
    [68] H. Zhang, and S. C. Smith, J. Phys. Chem. A 110, 3246(2006).
    [69] W. Chen and B. Poirier, J. Theor. Comput. Chem. 09, 435(2010).
    [70] C. Petty, W. Chen, and B. Poirier, J. Phys. Chem. A 117, 7280(2013).
    [71] C. Petty and B. Poirier, Chem. Phys. Lett. 605-606, 16(2014).
    [72] S. Y. Lin, Z. Sun, H. Guo, D. H. Zhang, P. Honvault, D. Xie, and S. Y. Lee, J. Phys. Chem. A 112, 602(2008).
    [73] M. G. Evans, and M. Polanyi, Trans. Faraday Soc. 35, 178(1939).
    [74] S. Y. Lin, H. Guo, G. Lendvay, and D. Xie, Phys. Chem. Chem. Phys. 11, 4715(2009).
    [75] F. Lique, M. Jorfi, P. Honvault, P. Halvick, S. Y. Lin, H. Guo, D. Q. Xie, P. J. Dagdigian, J. K los, and M. H. Alexander, J. Chem. Phys. 131, 221104(2009).
    [76] G. Quéméner, N. Balakrishnan, and B. K. Kendrick, Phys. Rev. A 79, 022703(2009).
    [77] J. C. Juanes-Marcos, G. Quemener, B. K. Kendrick, and N. Balakrishnan, Phys. Chem. Chem. Phys. 13, 19067(2011).
    [78] J. M. C. Marques and A. J. C. Varandas, Phys. Chem. Chem. Phys. 3, 505(2001).
    [79] P. F. Weck and N. Balakrishnan, Int. Rev. Phys.Chem. 25, 283(2006).
    [80] D. Xie, C. Xu, T. S. Ho, H. Rabitz, G. Lendvay, S. Y. Lin, and H. Guo, J. Chem. Phys. 126, 074315(2007).
    [81] A. J. C. Varandas, J. Chem. Phys. 138, 134117(2013).
    [82] A. J. C. Varandas, J. Chem. Phys. 138, 054120(2013).
    [83] D. C. Clary and H. J. Werner, Chem. Phys. Lett. 112, 346(1984).
    [84] D. C. Clary and J. P. Henshaw, Faraday Discuss. Chem. Soc. 84, 333(1987).
    [85] M. M. Teixidor and A. J. C. Varandas, J. Chem. Phys. 142, 014309(2015).
    [86] M. M. Teixidor and A. J. C. Varandas, Chem. Phys. Lett. 638, 61(2015).
    [87] S. Ghosh, R. Sharma, S. Adhikari, and A. J. C. Varandas, Chem. Phys. Lett. 675, 85(2017).
    [88] H. Du and J. P. Hessler, J. Chem. Phys. 96, 1077(1992).
    [89] K. Keßler and K. Kleinermanns, J. Chem. Phys. 97, 374(1992).
    [90] P. Jensen, R. J. Buenker, J. P. Gu, G. Osmann, and P. R. Bunker, Can. J. Phys. 79, 641(2001).
    [91] J. A. K los, F. Lique, M. H. Alexander, and P. J. Dagdigian, J. Chem. Phys. 129, 064306(2008).
    [92] A. Li, D. Xie, R. Dawes, A. W. Jasper, J. Ma, and H. Guo, J. Chem. Phys. 133, 144306(2010).
    [93] J. Ma, S. Y. Lin, H. Guo, Z. Sun, D. H. Zhang, and D. Xie, J. Chem. Phys. 133, 054302(2010).
    [94] P. Szabó and G. Lendvay, J. Phys. Chem. A 119, 7180(2015).
    [95] A. S. Sharipov and A. M. Starik, Phys. Scr. 88, 058305(2013).
    [96] A. Starik and A. Sharipov, Phys. Chem. Chem. Phys. 13, 16424(2011).
    [97] R. L. Brown, J. Geophys. Res. 75, 3935(1970).
    [98] C. Schmidt and H. I. Schiff, Chem. Phys. Lett. 23, 339(1973).
    [99] L. T. Cupitt, G. A. Takacs, and G. P. Glass, Int. J. Chem. Kinet. 14, 487(1982).
    [100] W. Hack and H. Kurzke, J. Phys. Chem. 90, 1900(1986).
    [101] P. Szabó and G. Lendvay, J. Phys. Chem. A 119, 12485(2015).
    [102] A. A. Chukalovsky, K. S. Klopovsky, A. P. Palov, A. M. Yu, and T. V. Rakhimova, J. Phys. D: Appl. Phys. 49, 485202(2016).
    [103] V. V. Melnikov, T. E. Odaka, P. Jensen, and T. Hirano, J. Chem. Phys. 128, 114316(2008).
    [104] H. C. Longuethiggins, U. Opik, M. H. L. Pryce, and R. A. Sack, Proc. R. Soc. London, Ser. A 244, 1(1958).
    [105] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc. 35, 77(1963).
    [106] F. R. S. M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45(1984).
    [107] B. Kendrick and R. T. Pack, J. Chem. Phys. 104, 7475(1996).
    [108] B. Kendrick and R. T. Pack, J. Chem. Phys. 104, 7502(1996).
    [109] B. Kendrick and R. T. Pack, J. Chem. Phys. 106, 3519(1997).
    [110] B. K. Kendrick, J. Phys. Chem. A 107, 6739(2003).
    [111] J. Hazra, B. K. Kendrick, and N. Balakrishnan, J. Phys. Chem. A 119, 12291(2015).
    [112] B. K. Kendrick, J. Hazra, and N. Balakrishnan, Nat. Commun. 6, 7918(2015).
    [113] J. Yang, Q. S. Li, and S. Zhang, Phys. Chem. Chem. Phys. 9, 466(2007).
    [114] J. P. Le Crane, M. T. Rayez, J. C. Rayez, and E. Villenave, Phys. Chem. Chem. Phys. 8, 2163(2006).
    [115] N. K. Srinivasan, M. C. Su, J. W. Sutherland, and J. V. Michael, J. Phys. Chem. A 109, 7902(2005).
    [116] J. Cerkovnik, E. Erzen, J. Koller, and B. Plesnicar, J. Am. Chem. Soc. 124, 404(2002).
    [117] O. Setokuchi, M. Sato, and S. Matuzawa, J. Phys. Chem. A 104, 3204(2000).
    [118] C. Murray, E. L. Derro, T. D. Sechler, and M. I. Lester, J. Phys. Chem. A 111, 4727(2007).
    [119] E. L. Derro, C. Murray, T. D. Sechler, and M. I. Lester, J. Phys. Chem. A 111, 11592(2007).
    [120] P. D. Cooper, M. H. Moore, and R. L. Hudson, J. Phys. Chem. A 110, 7985(2006).
    [121] S. Chalmet and M. F. Ruiz-Lopez, J. Chem. Phys. 124, 194502(2006).
    [122] W. M. F. Fabian, J. Kalcher, and R. Janoschek, Theor. Chem. Acc. 114, 182(2005).
    [123] A. J. C. Varandas, J. Phys. Chem. A 108, 758(2004).
    [124] H. Szichman and A. J. C. Varandas, J. Phys. Chem. A 103, 1967(1999).
    [125] H. G. Yu and A. J. C. Varandas, J. Chem. Soc. Faraday Trans. 93, 2651(1997).
    [126] B. Plesnicar, Acta Chimica Slovenica 52, 1(2005).
    [127] A. N. Wu, D. Cremer, and B. Plesnicar, J. Am. Chem. Soc. 125, 9395(2003).
    [128] X. Xu and W. A. Goddard, Proc. Nat. Acad. Sci. USA 99, 15308(2002).
    [129] A. Engdahl and B. Nelander, Science 295, 482(2002).
    [130] P. Wentworth, L. H. Jones, A. D. Wentworth, X. Y. Zhu, N. A. Larsen, I. A. Wilson, X. Xu, W. A. Goddard, K. D. Janda, A. Eschenmoser, and R. A. Lerner, Science 293, 1806(2001).
    [131] S. Aloisio and J. S. Francisco, J. Am. Chem. Soc. 121, 8592(1999).
    [132] B. Plesničar, T. Tuttle, J. Cerkovnik, J. Koller, and D. Cremer, J. Am. Chem. Soc. 125, 11553(2003).
    [133] F. Cacace, G. de Petris, F. Pepi, and A. Troiani, Science 285, 81(1999).
    [134] B. Nelander, A. Engdahl, and T. Svensson, Chem. Phys. Lett. 339, 295(2001).
    [135] W. Zheng, D. Jewitt, and R. I. Kaiser, Phys. Chem. Chem. Phys. 9, 2556(2007).
    [136] K. Suma, Y. Sumiyoshi, and Y. Endo, Science 308, 1885(2005).
    [137] E. L. Derro, T. D. Sechler, C. Murray, and M. I. Lester, J. Chem. Phys. 128, 244313(2008).
    [138] Y. Zhou, H. Hu, L. Li, H. Hou, and B. Wang, Comput. Theor. Chem. 1026, 24(2013).
    [139] B. J. Braams and H. G. Yu, Phys. Chem. Chem. Phys. 10, 3150(2008).
    [140] K. Suma, Y. Sumiyoshi, and Y. Endo, J. Chem. Phys. 139, 094301(2013).
    [141] C. Murray, E. L. Derro, T. D. Sechler, and M. I. Lester, Acc. Chem. Res. 42, 419(2009).
    [142] A. J. C. Varandas, Int. J. Quantum Chem. 114, 1327(2014).
    [143] M. Dupuis, G. Fitzgerald, B. Hammond, W. A. Lester, and H. F. Schaefer, J. Chem. Phys. 84, 2691(1986).
    [144] T. P. W. Jungkamp and J. H. Seinfeld, Chem. Phys.Lett. 257, 15(1996).
    [145] H. G. Yu and A. J. C. Varandas, Chem. Phys. Lett. 334, 173(2001).
    [146] A. Mansergas, J. M. Anglada, S. Olivella, M. F. RuizLopez, and M. Martins-Costa, Phys. Chem. Chem. Phys. 9, 5865(2007).
    [147] A. J. C. Varandas, Phys. Chem. Chem. Phys. 13, 9796(2011).
    [148] M. E. Varner, M. E. Harding, J. Vazquez, J. Gauss, and J. F. Stanton, J. Phys. Chem. A 113, 11238(2009).
    [149] M. E. Varner, M. E. Harding, J. Gauss, and J. F. Stanton, Chem. Phys. 346, 53(2008).
    [150] J. M. Anglada, S. Olivella, and A. Solé, J. Chem. Theory Comput. 6, 2743(2010).
    [151] A. J. C. Varandas, J. Chem. Theory Comput. 8, 428(2012).
    [152] M. C. McCarthy, V. Lattanzi, D. Kokkin, O. Martinez Jr., and J. F. Stanton, J. Chem. Phys. 136, 034303(2012).
    [153] E. L. Derro, T. D. Sechler, C. Murray, and M. I. Lester, J. Phys. Chem. A 112, 9269(2008).
    [154] S. D. Le Picard, M. Tizniti, A. Canosa, I. R. Sims, and I. W. M. Smith, Science 328, 1258(2010).
    [155] P. A. Denis and F. R. Ornellas, J. Phys. Chem. A 113, 499(2009).
    [156] P. A. Denis, M. Kieninger, O. N. Ventura, R. E. Cachau, and G. H. F. Diercksen, Chem. Phys. Lett. 365, Pii s0009-2614(02)01432-x 440(2002).
    [157] A. J. C. Varandas and H. G. Yu, Mol. Phys. 91, 301(1997).
    [158] L. F. Keyser, J. Phys. Chem. 86, 3439(1982).
    [159] U. C. Sridharan, L. X. Qiu, and F. Kaufman, J. Phys. Chem. 86, 4569(1982).
    [160] W. H. Brune, J. J. Schwab, and J. G. Anderson, J. Phys. Chem. 87, 4503(1983).
    [161] J. M. Nicovich and P. H. Wine, J. Phys. Chem. 91, 5118(1987).
    [162] A. R. Ravishankara, P. H. Wine, and J. M. Nicovich, J. Chem. Phys. 78, 6629(1983).
    [163] U. C. Sridharan, F. S. Klein, and F. Kaufman, J. Chem. Phys. 82, 592(1985).
    [164] W. Wang, R. Gonzalez-Jonte, and A. J. C. Varandas, J. Phys. Chem. A 102, 6935(1998).
    [165] A. J. C. Varandas and H. Szichman, Chem. Phys. Lett. 295, 113(1998).
    [166] D. M. Silveira, P. Caridade, and A. J. C. Varandas, J. Phys. Chem. A 108, 8721(2004).
    [167] B. Jiang and H. Guo, J. Chem. Phys. 139, 054112(2013).
    [168] Y. L. Zhang, X. Y. Zhou, and B. Jiang, Chin. J. Chem. Phys. 30, 727(2017).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1192) PDF downloads(627) Cited by()

Proportional views
Related

Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems

doi: 10.1063/1674-0068/31/cjcp1804060

Abstract: Complex-forming reactions widely exist in gas-phase chemical reactions.Various complexforming bimolecular reactions have been investigated and interesting phenomena have been discovered.The complex-forming reactions usually have small or no barrier in the entrance channel,which leads to obvious differences in kinetic and dynamic characteristics compared with direct reactions.Theoretically,quantum state-resolved reaction dynamics can provide the most detailed microscopic dynamic mechanisms and is now feasible for a direct reaction with only one potential barrier.However,it is of great challenge to construct accurate potential energy surfaces and perform accurate quantum dynamics calculations for a complex polyatomic reaction involving deep potential wells and multi-channels.This paper reviews the most recent progress in two prototypical oxyhydrogen complex-forming reaction systems,HO2 and HO3,which are significant in combustion,atmospheric,and interstellar chemistry.We will present a brief survey of both computational and experimental work and emphasize on some unsolved problems existing in these systems.

Jun-xiang Zuo, Xi-xi Hu, Dai-qian Xie. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 123-134. doi: 10.1063/1674-0068/31/cjcp1804060
Citation: Jun-xiang Zuo, Xi-xi Hu, Dai-qian Xie. Quantum Dynamics of Oxyhydrogen Complex-Forming Reactions for the HO2 and HO3 Systems[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 123-134. doi: 10.1063/1674-0068/31/cjcp1804060
Reference (168)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return