Yu-xiang Weng. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 135-151. doi: 10.1063/1674-0068/31/cjcp1803055
Citation: Yu-xiang Weng. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 135-151. doi: 10.1063/1674-0068/31/cjcp1803055

Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase

doi: 10.1063/1674-0068/31/cjcp1803055
  • Received Date: 2018-03-30
  • Rev Recd Date: 2018-04-21
  • Two dimensional Fourier transform electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase.This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose.Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection,leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats;then upon the possible mixing among the pure electronic transition,single-mode and multi-mode coupled vibronic transition leading to the observed beating phenomena.Finally,recent advances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.
  • 加载中
  • [1] W. R. Lambert, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 75, 5958(1981).
    [2] A. H. Zewail, J. Phys. Chem. 97, 12427(1993).
    [3] H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, Science 311, 1589(2006).
    [4] G. D. Reid and K. Wynne, Ultrafast Laser Technology and Spectroscopy, in Encyclopedia of Analytical Chemistry, Chichester: John Wiley & Sons Ltd., (2000).
    [5] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mančal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782(2007).
    [6] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature 463, 644(2010).
    [7] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, Proc. Natl. Acad. Sci. USA 107, 12766(2010).
    [8] E. Romero, V. I. Novoderezhkin, and R. van Grondelle, Nature 543, 355(2017).
    [9] Y. X. Weng, Physics (in Chinese) 39, 331(2010).
    [10] Y. X. Weng, Physics (in Chinese) 36, 817(2007).
    [11] E. Collini and G. D. Scholes, Science 323, 369(2009).
    [12] K. Hao, G. Moody, F. Wu, C.K. Dass, L. Xu, C. H. Chen, L. Sun, M. Y. Li, L. J. Li, A. H. MacDonald, and X. Li, Nature Phys. 12, 677(2016).
    [13] M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184(2004).
    [14] J. P. Ogilvie and K. J. Kubarych, in: E. Arimondo, P.R. Berman, C. C. Lin (Eds.), Adv. At. Mol. Opt. Phys. 57, 249(2009).
    [15] S. M. G. Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489(1999).
    [16] T. H. Zhang, C. N. Borca, X. Q. Li, S. T. Cundiff, Optics Express 13, 7432(2005).
    [17] J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, Chem. Phys. Lett. 297, 307(1998).
    [18] J. D. Hybl, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 115, 6606(2001).
    [19] T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Nature 434, 625(2005).
    [20] V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, Opt. Express 17, 9764(2009).
    [21] P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, Opt. Lett. 34, 1390(2009).
    [22] S. T. Cundiff, A. D. Bristow, M. Siemens, H. Li, G. Moody, D. Karaiskaj, X. Dai, and T. Zhang, IEEE J. Sel. Top. Quant. 18, 318(2012).
    [23] M. Cho, Chem. Rev. 108, 1331(2008).
    [24] D. Sen, Current Science 107, 203(2014).
    [25] U. Fano, Rev. Modern Phys. 29, 74(1957).
    [26] M. G. Dantus, P. Gross, Encyclopedia of Applied Physics, 22, 431(1998).
    [27] D. J. Griffiths, Introduction to Quantum Mechanics, Cambridge University Press, (2016).
    [28] C. N. Lincoln, Ph. D Thesis, Swinburne University of Technology, (2007).
    [29] R. B. Williams, Ph. D thesis, Cornell University (2001).
    [30] S. V. Poltavtsev, M. Salewski, Y. V. Kapitonov, I. A. Yugova, I. A. Akimov, C. Schneider, M. Kamp, S. Hoefling, D. R. Yakovlev, A. V. Kavokin, and M. Bayer, Phys. Rev. B 93, 121304(R) (2016).
    [31] E. Collini, Chem. Soc. Rev. 42, 4932(2013).
    [32] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford University Press, (1999).
    [33] C. Nilsson, Lund Reports in Atomic Physics, (1997).
    [34] P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, (2011).
    [35] J. H. Eberly, Optical Resonance and Two-level Atoms, Dover: (1987).
    [36] D. Polli, I. Rivalta, A. Nenov, O. Weingart, M. Garavelli, and G. Cerullo, Photochem. Photobiol. Sci. 14, 213(2015).
    [37] J. T. Fourkas, Annu. Rev. Phys. Chem. 53, 17(2002).
    [38] W. Zinth and W. Kaiser, Ultrashort Laser Pulses, Springer, (1988).
    [39] M. Mitsunaga, Optical and Quantum Electronics 24, 1137(1992).
    [40] S. Kroll and U. Elman, Opt. Lett. 18, 1834(1993).
    [41] F. D. Fuller, J. P. Ogilvie, in: M. A. Johnson, T. J. Martinez (Eds.), Annu. Rev. Phys. Chem. 66, 667(2015).
    [42] M. H. Cho, T. Brixner, I. Stiopkin, H. Vaswani, and G. R. Fleming, J. Chin. Chem. Soc. 53, 15(2006).
    [43] D.M. Jonas, Annu. Rev. Phys. Chem. 54, 425(2003).
    [44] T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 4221(2004).
    [45] Y. X. Weng, H. Chen, Ultrafast Spectroscopy: Principles and Techniques (in Chinese), Beijing: Chemical Industry Press, (2013).
    [46] K. Wynne, M. Muller, D. Brandt, and J. D. W. Vanvoorst, Chem. Phys. 125, 211(1988).
    [47] B. D. Fainberg and V. Narbaev, J. Chem. Phys. 113, 8113(2000).
    [48] D. B. Turner, R. Dinshaw, K. K. Lee, M. S. Belsley, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, Phys. Chem. Chem. Phys. 14, 4857(2012).
    [49] A. Nemeth, F. Milota, T. Mancal, V. Lukes, J. Hauer, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184514(2010).
    [50] N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Mancal, J. Phys. Chem. B 116, 7449(2012).
    [51] V. Butkus, D. Zigmantas, D. Abramavicius, and L. Valkunas, Chem. Phys. Lett. 587, 93(2013).
    [52] T. Mancal, A. Nemeth, F. Milota, V. Lukes, H. F. Kauffmann, and J. Sperling, J. Chem. Phys. 132, 184515(2010).
    [53] V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Chem. Phys. Lett. 545, 40(2012).
    [54] A. Sakurai and Y. Tanimura, J. Phys. Chem. A 115, 4009(2011).
    [55] J. Xu, R. Xu, D. Abramavicius, H. Zhang, and Y. Yan, Chin. J. Chem. Phys. 24, 497(2011).
    [56] S. S. Senlik, V. R. Policht, and J. P. Ogivie, J. Phys. Chem. Lett. 6, 2413(2015).
    [57] T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y. C. Cheng, M. Ballottari, R. Bassi, and G. R. Fleming, J. Phys. Chem. B 113, 16291(2009).
    [58] V. Butkus, L. Valkunas, and D. Abramavicius, J. Chem. Phys. 140, 034306(2014).
    [59] E. Basinskaite, V. Butkus, D. Abramavicius, and L. Valkunas, Photosyn. Res. 121, 95(2014).
    [60] Y. P. Wang, Z. Wang, and Y. X. Weng, Chin. Sci. Bull. (Chinese Version) 57, 2895(2012).
    [61] A. F. Fidler and G. S. Engel, J. Phys. Chem. A 117, 9444(2013).
    [62] S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, Chem. Phys. Lett. 683, 591(2017).
    [63] S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, Chin. J. Chem. Phys. 28, 509(2015).
    [64] K. Huang and A. Rhys, Proc. R. Soc. Lond. A 204, 406(1950).
    [65] J. Pieper, J. Voigt, and G. J. Small, J. Phys. Chem. B 103, 2319(1999).
    [66] M. Ratsep, M. Pajusalu, and A. Freiberg, Chem. Phys. Lett. 479, 140(2009).
    [67] G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi, and G. R. Fleming, Nature Chem. 4, 389(2012).
    [68] M. T. Zanni, N. H. Ge, Y. S. Kim, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 98, 11265(2001).
    [69] D. Palecek, P. Edlund, S. Westenhoff, and D. Zigmantas, Sci. Advances 3, e1603141(2017).
    [70] B. S. Rolczynski, H. Zheng, V. P. Singh, P. Navotnaya, A. R. Ginzburg, J. R. Caram, K. Ashraf, A. T. Gardiner, S. H. Yeh, S. Kais, R. J. Cogdell, and G. S. Engel, Chem. 4, 138(2018).
    [71] G. D. Scholes, G. R. Fleming, L.X. Chen, A. AspuruGuzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. van Grondelle, A. Ishizaki, D.M. Jonas, J. S. Lundeen, J. K. McCusker, S. Mukamel, J. P. Ogilvie, A. Olaya-Castro, M. A. Ratner, F. C. Spano, K. B. Whaley, and X. Zhu, Nature 543, 647(2017).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(814) PDF downloads(480) Cited by()

Proportional views
Related

Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase

doi: 10.1063/1674-0068/31/cjcp1803055

Abstract: Two dimensional Fourier transform electronic spectroscopy (2DES) in the visible region enables direct observation of complex dynamics of molecules including quantum coherence in the condensed phase.This review aims to provide a bridge between the principles and intuitive physical description of 2DES for tutorial purpose.Special emphasis is laid upon how 2DES circumvents the restrictions from both uncertainty principle and the wave-packet collapse during the coherent detection,leading to the successful detection of the coherence in terms of energy difference between the eigenstates showing as the quantum beats;then upon the possible mixing among the pure electronic transition,single-mode and multi-mode coupled vibronic transition leading to the observed beating phenomena.Finally,recent advances in experimentally distinguishing between the electronic coherence and the vibrational coherence are briefly discussed.

Yu-xiang Weng. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 135-151. doi: 10.1063/1674-0068/31/cjcp1803055
Citation: Yu-xiang Weng. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 135-151. doi: 10.1063/1674-0068/31/cjcp1803055
Reference (71)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return