Liang-hui Gao, Bin-bin Xie, Wei-hai Fang. Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 12-26. doi: 10.1063/1674-0068/31/cjcp1712234
Citation: Liang-hui Gao, Bin-bin Xie, Wei-hai Fang. Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 12-26. doi: 10.1063/1674-0068/31/cjcp1712234

Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics

doi: 10.1063/1674-0068/31/cjcp1712234
  • Received Date: 2017-12-06
  • Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equation, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.
  • 加载中
  • [1] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford, UK: Oxford University Press, (1954).
    [2] D. M. Hirst, Potential Energy Surfaces: Molecular Structure and Reaction Dynamics, London: Taylor & Francis, (1985).
    [3] M. Baer, Beyond Born-Oppenheimer: Electronic Nona- diabatic Coupling Terms and Conical Intersections, Hoboken, New Jersey: John Wiley & Son, (2006).
    [4] A. W. Jasper, C. Y. Zhu, S. Nangiaa, and D. G. Truhlar, Faraday Discuss. 127, 1 (2004).
    [5] J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
    [6] G. A. Worth and L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004).
    [7] T. Yonehara, K. Hanasaki, and K. Takatsuka, Chem. Rev. 112, 499 (2012).
    [8] S. Deb and P. M. Weber, Annu. Rev. Phys. Chem. 62, 19 (2011).
    [9] W. Domcke and D. R. Yarkony, Annu. Rev. Phys. Chem. 63, 325 (2012).
    [10] J. H. Lehman and M. I. Lester, Annu. Rev. Phys. Chem. 65, 537 (2014).
    [11] W. J. Schreier, P. Gilch, and W. Zinth, Annu. Rev. Phys. Chem. 66, 497 (2015).
    [12] H. S. Goan and G. J. Milburn, Phys. Rev. B 64, 235307 (2001).
    [13] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
    [14] C. Zener, Proc. R. Soc. A 137, 696 (1932).
    [15] M. Topaler and N. Makri, J. Chem. Phys. 100, 4430 (1996).
    [16] R. B. Gerber, V. Buch, and M. A. Ratner, J. Chem. Phys. 77, 3022 (1982).
    [17] R. Kosloff, J. Chem. Phys. 92, 2087 (1988).
    [18] P. Jungwirth and R. B. Gerber, J. Chem. Phys. 102, 8855 (1995).
    [19] P. Jungwirth and R. B. Gerber, J. Chem. Phys. 102, 6046 (1995).
    [20] P. Jungwirth, E. Fredj, and R. B. Gerber, J. Chem. Phys. 104, 9332 (1996).
    [21] M. H. Beck, A. Jäckle, G. A. Worth, and H. D. Meyer, Phys. Rep. 324, 1 (2000).
    [22] H. Meyer and G. A. Worth, Theor. Chem. Acc. 109, 251 (2003).
    [23] H. B. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).
    [24] D. Hochstuhl, C. M. Hinz, and M. Bonitz, Eur. Phys. J. Spec. Top. 223, 177 (2014).
    [25] H. B. Wang, J. Phys. Chem. A 119, 7951 (2015).
    [26] R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
    [27] S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 112, 6543 (2000).
    [28] M. Santer, U. Manthe, and G. Stock, J. Chem. Phys. 114, 2001 (2001).
    [29] K. Ando, Chem. Phys. Lett. 360, 240 (2002).
    [30] I. Horenko, C. Salzmann, B. Schmidt, and C. Schütte, J. Chem. Phys. 117, 11075 (2002).
    [31] K. Ando and M. Santer, J. Chem. Phys. 118, 10399 (2003).
    [32] J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).
    [33] G. D. Billing, Chem. Phys. Lett. 100, 535 (1983).
    [34] N. L. Doltsinis and D. Marx, J. Theor. Comput. Chem. 1, 319 (2002).
    [35] C. Y. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 121, 7658 (2004).
    [36] C. Y. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Theory Comput. 1, 527 (2005).
    [37] M. J. Bedard-Hearn, R. E. Larsen, and B. J. Schwartz, J. Chem. Phys. 123, 234106 (2005).
    [38] A. V. Akimov, R. Long, and O. V. Prezhdo, J. Chem. Phys. 140, 194107 (2014).
    [39] J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
    [40] J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
    [41] E. Neria and A. Nitzan, J. Chem. Phys. 99, 1109 (1993).
    [42] B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 5942 (1996).
    [43] O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 5863 (1997).
    [44] O. V. Prezhdo and P. J. Rossky, J. Chem. Phys. 107, 825 (1997).
    [45] Y. L. Volobuev, M. D. Hack, M. S. Topaler, and D. G. Truhlar, J. Chem. Phys. 112, 9716 (2000).
    [46] M. D. Hack and D. G. Truhlar, J. Chem. Phys. 114, 2894 (2001).
    [47] C. Y. Zhu, K. Nobusada, and H. Nakamura, J. Chem. Phys. 115, 3031 (2001).
    [48] C. Y. Zhu, H. Kamisaka, and H. Nakamura, J. Chem. Phys. 115, 11036 (2001).
    [49] C. Y. Zhu, H. Kamisaka, and H. Nakamura, J. Chem. Phys. 116, 3234 (2002).
    [50] I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
    [51] C. Y. Zhu, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 120, 5543 (2004).
    [52] A. W. Jasper and D. G. Truhlar, J. Chem. Phys. 123, 064103 (2005).
    [53] J. P. Rank and R. Kapral, J. Chem. Phys. 132, 074106 (2010).
    [54] G. Granucci, M. Persico, and A. Zoccante, J. Chem. Phys. 133, 134111 (2010).
    [55] J. E. Subotnik, J. Phys. Chem. A 115, 12083 (2011).
    [56] J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
    [57] N. Shenvi, J. E. Subotnik, and W. T. Yang, J. Chem. Phys. 134, 144102 (2011).
    [58] P. Shushkov, R. Li, and J. C. Tully, J. Chem. Phys. 137, 22A549 (2012).
    [59] S. Fernandez-Alberti, A. E. Roitberg, T. Nelson, and S. Tretiak, J. Chem. Phys. 137, 014512 (2012).
    [60] B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012).
    [61] N. Shenvi and W. T. Yang, J. Chem. Phys. 137, 22A528 (2012).
    [62] H. M. Jaeger, S. Fischer, and O. V. Prezhdo, J. Chem. Phys. 137, 22A545 (2012).
    [63] A. Kelly and T. E. Markland, J. Chem. Phys. 139, 014104 (2013).
    [64] V. N. Gorshkov, S. Tretiak, and D. Mozyrsky, Nat. Commun. 4, 2144 (2013).
    [65] J. E. Subotnik, W. J. Ouyang, and B. R. Landry, J. Chem. Phys. 139, 214107 (2013).
    [66] J. E. Subotnik, A. Jain, B. Landry, A. Petit, W. J. Ouyang, and N. Bellonzi, Annu. Rev. Phys. Chem. 67, 387 (2016).
    [67] C. Y. Zhu, Sci. Rep. 6, 24198 (2016).
    [68] X. Gao and W. Thiel, Phys. Rev. E 95, 013308 (2017).
    [69] W. Feng, L. T. Xu, X. Q. Li, W. H. Fang, and Y. J. Yan, AIP Adv. 4, 077131 (2014).
    [70] T. J. Martinez, M. Ben-Nun, and R. D. Levine, J. Phys. Chem. 100, 7884 (1996).
    [71] M. Ben-Nun and T. J. Martnez, J. Chem. Phys. 108, 7244 (1998).
    [72] M. Ben-Nun, J. Quenneville, and T. J. Martnez, J. Phys. Chem. A 104, 5161 (2000).
    [73] B. G. Levine and T. J. Martnez, Annu. Rev. Phys. Chem. 58, 613 (2007).
    [74] K. Saita and D. V. Shalashilin, J. Chem. Phys. 137, 22A506 (2012).
    [75] D. V. Makhov, W. J. Glover, T. J. Martinez, and D. V. Shalashilin, J. Chem. Phys. 141, 054110 (2014).
    [76] H. D. Meyera and W. H. Miller, J. Chem. Phys. 70, 3214 (1979).
    [77] G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
    [78] W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).
    [79] W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
    [80] W. H. Miller and S. J. Cotton, J. Chem. Phys. 145, 081102 (2016).
    [81] J. Liu, J. Chem. Phys. 145, 204105 (2016).
    [82] L. H. Liu, S. Yuan, W. H. Fang, and Y. Zhang, J. Phys. Chem. A 115, 10027 (2011).
    [83] Y. T. Wang, X. Y. Liu, G. L. Cui, W. H. Fang, and W. Thiel, Angew. Chem. Int. Ed. Engl. 128, 14215 (2016).
    [84] B. B. Xie, L. H. Liu, G. L. Cui, W. H. Fang, J. Cao, W. Feng, and X. Q. Li, J. Chem. Phys. 143, 194107 (2015).
    [85] B. Xie, G. Cui, and W. Fang, J. Chem. Theory Comput. 13, 2717 (2017).
    [86] S. K. Min, F. Agostini, and E. K. Gross, Phys. Rev. Lett. 115, 73001 (2015).
    [87] L. Liu, S. Xia, and W. Fang, J. Phys. Chem. A 118, 8977 (2014).
    [88] L. Gagliardi, D. G. Truhlar, G. L. Manni, R. K. Carlson, C. E. Hoyer, and J. L. Bao, Acc. Chem. Res. 50, 66 (2017).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1045) PDF downloads(828) Cited by()

Proportional views
Related

Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics

doi: 10.1063/1674-0068/31/cjcp1712234

Abstract: Electronically non-adiabatic processes are essential parts of photochemical process, collisions of excited species, electron transfer processes, and quantum information processing. Various non-adiabatic dynamics methods and their numerical implementation have been developed in the last decades. This review summarizes the most significant development of mixed quantum-classical methods and their applications which mainly include the Liouville equation, Ehrenfest mean-field, trajectory surface hopping, and multiple spawning methods. The recently developed quantum trajectory mean-field method that accounts for the decoherence corrections in a parameter-free fashion is discussed in more detail.

Liang-hui Gao, Bin-bin Xie, Wei-hai Fang. Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 12-26. doi: 10.1063/1674-0068/31/cjcp1712234
Citation: Liang-hui Gao, Bin-bin Xie, Wei-hai Fang. Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 12-26. doi: 10.1063/1674-0068/31/cjcp1712234
Reference (88)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return