Xiao Chen, Fang-liang Li, Qing Guo, Dong-xu Dai, Xue-ming Yang. Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 643-648. doi: 10.1063/1674-0068/30/cjcp1711214
Citation: Xiao Chen, Fang-liang Li, Qing Guo, Dong-xu Dai, Xue-ming Yang. Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 643-648. doi: 10.1063/1674-0068/30/cjcp1711214

Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)

doi: 10.1063/1674-0068/30/cjcp1711214
  • Received Date: 2017-11-14
  • Rev Recd Date: 2017-12-20
  • The adsorption and reaction of acetaldehyde on the clean and CO pre-covered Ru(0001) surfaces have been investigated using temperature programmed desorption method. On the clean Ru(0001) surface, the decomposition of acetaldehyde is the main reaction channel, with little polymerization occurring. However, on the CO pre-covered Ru(0001) surface, the decomposition of acetaldehyde is inhibited considerably with increasing CO coverage. Whereas, the polymerization occurs efficiently, especially at high CO coverage (θCO>0.5 ML), which is strongly CO coverage dependent. Combined with previous studies, the well-ordered hexagonal structure of CO layer formed on the Ru(0001) surface at high CO coverage that matches the configuration of paraldehyde is likely to be the origin of this remarkable phenomenon.
  • 加载中
  • [1] A. Kiennemann, H. Idriss, R. Kieffer, P. Chaumette, and D. Durand, Ind. Eng. Chem. Res. 30, 1130(1991).
    [2] J. L. Davis and M. A. Barteau, Surf. Sci. 197, 123(1988).
    [3] J. L. Davis and M. A. Barteau, Surf. Sci. 187, 387(1987).
    [4] M. Karatok, E. I. Vovk, A. A. Shah, A. Turksoy, and E. Ozensoy, Surf. Sci. 641, 289(2015).
    [5] B. H. Davis, Catal. Today 141, 25(2009).
    [6] J. Kang, S. Zhang, Q. Zhang, and Y. Wang, Angew. Chem. Int. Ed. 121, 2603(2009).
    [7] C. X. Xiao, Z. P. Cai, T. Wang, Y. Kou, and N. Yan, Angew. Chem. Int. Ed. 47, 746(2008).
    [8] R. B. Barros, A. R. Garcia, and L. M. Ilharco, J. Phys. Chem. B 105, 11186(2001).
    [9] P. Gazdzicki and P. Jakob, J. Phys. Chem. C 114, 2655(2010).
    [10] M. A. Henderson, Y. Zhou, and J. M. White, J. Am. Chem. Soc. 111, 1185(1989).
    [11] J. L. Davis and M. A. Barteau, J. Am. Chem. Soc. 111, 1782(1989).
    [12] R. Shekhar, M. A. Barteau, R. V. Plank, and J. M. Vohs, J. Phys. Chem. B 101, 7939(1997).
    [13] R. J. Madix, T. Yamada, and S. W. Johnson, Appl. Surf. Sci. 19, 43(1984).
    [14] G. Wu, D. Stacchiola, M. Collins, and W. T. Tysoe, Surf. Rev. Lett. 7, 271(2000).
    [15] C. Houtman, J. Catal. 130, 528(1991).
    [16] B. Caglar, J. W. Niemantsverdriet, and C. J. Weststrate, Langmuir 33, 11919(2017).
    [17] I. Kovács, A. P. Farkas, Á. Szits, Z. Kónya, and J. Kiss, Surf. Sci. 664, 129(2017).
    [18] H. Zhao, J. Kim, and B. E. Koel, Surf. Sci. 538, 147(2003).
    [19] C. L. A. Lamont, W. Stenzel, H. Conrad, and A. M. Bradshaw, J. Electron. Spectrosc. 64, 287(1993).
    [20] W. S. Sim, P. Gardner, and D. A. King, J. Am. Chem. Soc. 118, 9953(1996).
    [21] Z. Li, Z. Zhang, B. D. Kay, and Z. Dohnálek, J. Phys. Chem. C 115, 9692(2011).
    [22] Q. Guo, C. Xu, Z. Ren, W. Yang, Z. Ma, D. Dai, H. Fan, T. K. Minton, and X. Yang, J. Am. Chem. Soc. 134, 13366(2012).
    [23] J. T. Crant and T. W. Haas, Surf. Sci. 21, 76(1970).
    [24] H. Rauscher, K. L. Kostov, and D. Menzel, Surf. Sci. 278, 62(1992).
    [25] P. He, H. Dietrich, and K. Jacobi, Surf. Sci. 345, 241(1996).
    [26] H. Pfnür, P. Feulner, and D. Menzel, J. Chem. Phys. 79, 4613(1983).
    [27] G. E. Thomas and W. H. Weinberg, J. Chem. Phys. 70, 1437(1979).
    [28] Q. W. Chen, J. Liu, X. Zhou, J. Shang, Y. J. Zhang, X. Shao, Y. F. Wang, J. L. Li, W. Chen, G. Q. Xu, and K. Wu, J. Phys. Chem. C 119, 8626(2015).
    [29] T. E. Madey and D. Menzel, Jpn. J. Appl. Phys. Suppl. 13, 229(1974).
    [30] E. D. Williams and W. H. Weinberg, Surf. Sci. 82, 93(1979).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1009) PDF downloads(333) Cited by()

Proportional views
Related

Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)

doi: 10.1063/1674-0068/30/cjcp1711214

Abstract: The adsorption and reaction of acetaldehyde on the clean and CO pre-covered Ru(0001) surfaces have been investigated using temperature programmed desorption method. On the clean Ru(0001) surface, the decomposition of acetaldehyde is the main reaction channel, with little polymerization occurring. However, on the CO pre-covered Ru(0001) surface, the decomposition of acetaldehyde is inhibited considerably with increasing CO coverage. Whereas, the polymerization occurs efficiently, especially at high CO coverage (θCO>0.5 ML), which is strongly CO coverage dependent. Combined with previous studies, the well-ordered hexagonal structure of CO layer formed on the Ru(0001) surface at high CO coverage that matches the configuration of paraldehyde is likely to be the origin of this remarkable phenomenon.

Xiao Chen, Fang-liang Li, Qing Guo, Dong-xu Dai, Xue-ming Yang. Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 643-648. doi: 10.1063/1674-0068/30/cjcp1711214
Citation: Xiao Chen, Fang-liang Li, Qing Guo, Dong-xu Dai, Xue-ming Yang. Modification of Surface Reactivity by CO: Effects on Decomposition and Polymerization of Acetaldehyde on Ru(0001)[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 643-648. doi: 10.1063/1674-0068/30/cjcp1711214
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return