Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211
Citation: Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211

Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra

doi: 10.1063/1674-0068/30/cjcp1711211
  • Received Date: 2017-11-14
  • Rev Recd Date: 2017-12-20
  • The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin film of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at ~230 and ~380 nm are obviously observed. The bands are assigned as the contacted ion pairs[CuCl3(H2O)n]- or[CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of[CuCl3(H2O)n]- or[CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spectroscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.

     

  • loading
  • [1]
    J. R. Bell, J. L. Tyvoll, and D. Wertz, J. Am. Chem. Soc. 95, 1456(1973).
    [2]
    J. L. Tyvoll and D. Wertz, J. Inorg. Nucl. Chem. 36, 1319(1974).
    [3]
    M. Magini, J. Chem. Phys. 74, 2523(1981).
    [4]
    P. Salmon, G. Neilson, and J. Enderby, J. Phys. C 21, 1335(1988).
    [5]
    S. Ansell, R. Tromp, and G. Neilson, J. Phys.:Condens. Matter. 7, 1513(1995).
    [6]
    N. R. Texler, S. Holdway, G. W. Neilson, and B. M. Rode, J. Chem. Soc. Faraday Trans. 94, 59(1998).
    [7]
    P. Dangelo, E. Bottari, M. R. Festa, H. F. Nolting, and N. V. Pavel, J. Chem. Phys. 107, 2807(1997).
    [8]
    D. Yang and W. Y. Xu, Spectrosc. Spect. Anal. 31, 2742(2011).
    [9]
    D. Schroder, L. Duchackova, J. Tarabek, M. Karwowska, K. J. Fijalkowski, M. Oncak, and P. Slavicek, J. Am. Chem. Soc. 133, 2444(2011).
    [10]
    T. Wende, N. Heine, T. I. Yacovitch, K. R. Asmis, D. M. Neumark, and L. Jiang, Phys. Chem. Chem. Phys. 18, 267(2016).
    [11]
    R. Z. Li, C. W. Liu, Y. Q. Gao, H. Jiang, H. G. Xu, and W. J. Zheng, J. Am. Chem. Soc. 135, 5190(2013).
    [12]
    K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, Science 328, 1006(2010).
    [13]
    H. Zhao, J. H. Chang, A. Boika, and A. J. Bard, Anal. Chem. 85, 7696(2013).
    [14]
    Y. Meng and A. J. Bard, Anal. Chem. 87, 3498(2015).
    [15]
    R. T. Zhang and W. Zhuang, J. Chem. Phys. 140, 054507(2014).
    [16]
    C. DeKock and D. Gruen. J. Chem. Phys. 44, 4387(1966).
    [17]
    B. Scholz, H. D. Lüdemann, and E. Franck, Bunsen Gesell. Physikal. Chem. Ber. 76, 406(1972).
    [18]
    M. Khan and M. Schwing-Weill, Inorg. Chem. 15, 2202(1976).
    [19]
    J. Bjerrum, Acta Chem. Scand. A 41, 328(1987).
    [20]
    J. Brugger, D. C. McPhail, J. Black, and L. Spiccia, Geochim. Cosmochim. Acta. 65, 2691(2001).
    [21]
    P. De Vreese, N. R. Brooks, K. van Hecke, L. Vvan Meervelt, E. Matthijs, K. Binnemans, and R. van Deun, Inorg. Chem. 51, 4972(2012).
    [22]
    N. Zhang, Q. B. Zhou, X. Yin, and D. W. Zeng, J. Solut. Chem. 43, 326(2014).
    [23]
    H. J. Li, H. B. Yi, and J. J. Xu, Geochim. Cosmochim. Acta 165, 1(2015).
    [24]
    L. Trevani, J. Ehlerova, J. Sedlbauer, and P. R. Tremaine, Int. J. Hydrog. Energy. 35, 4893(2010).
    [25]
    N. Zhang, D. W. Zeng, G. Hefter, and Q. Y. Chen, J. Mol. Liq. 198, 200(2014).
    [26]
    F. F. Xia, H. B. Yi, and D. W. Zeng, J. Phys. Chem. A 113, 14029(2009).
    [27]
    F. F. Xia, H. B. Yi, and D. W. Zeng, J. Phys. Chem. A 114, 8406(2010).
    [28]
    H. B. Yi, F. F. Xia, Q. B. Zhou, and D. W. Zeng, J. Phys. Chem. A 115, 4416(2011).
    [29]
    K. Lin, X. G. Zhou, S. L. Liu, and Y. Luo, Chin. J. Chem. Phys. 26, 121(2013).
    [30]
    C. Q. Tang, K. Lin, X. G. Zhou, and S. L. Liu, Chin. J. Chem. Phys. 29, 129(2016).
    [31]
    Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou, and S. Liu, J. Raman Spectrosc. 47, 1231(2016).
    [32]
    J. Tomlinson-Phillips, J. Davis, D. Ben-Amotz, D. Spangberg, L. Pejov, and K. Hermansson, J. Phys. Chem. A 115, 6177(2011).
    [33]
    B. M. Rankin and D. Ben-Amotz, J. Am. Chem. Soc. 135, 8818(2013).
    [34]
    J. J. Max, V. Gessinger, C. van Driessche, P. Larouche, and C. Chapados, J. Chem. Phys. 126, 184507(2007).
    [35]
    J. J. Max and C. Chapados, J. Chem. Phys. 130, 124513(2009).
    [36]
    Y. Okazaki, T. Taniuchi, G. Mogami, N. Matubayasi, and M. Suzuki, J. Phys. Chem. A 118, 2922(2014).
    [37]
    M. Barakzehi, S. H. Amirshahi, S. Peyvandi, and M. G. Afjeh. J. Opt. Soc. Am. A 30, 1862(2013).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1172) PDF downloads(510) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return