Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211
Citation: Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211

Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra

doi: 10.1063/1674-0068/30/cjcp1711211
  • Received Date: 2017-11-14
  • Rev Recd Date: 2017-12-20
  • The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin film of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at ~230 and ~380 nm are obviously observed. The bands are assigned as the contacted ion pairs[CuCl3(H2O)n]- or[CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of[CuCl3(H2O)n]- or[CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spectroscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.
  • 加载中
  • [1] J. R. Bell, J. L. Tyvoll, and D. Wertz, J. Am. Chem. Soc. 95, 1456(1973).
    [2] J. L. Tyvoll and D. Wertz, J. Inorg. Nucl. Chem. 36, 1319(1974).
    [3] M. Magini, J. Chem. Phys. 74, 2523(1981).
    [4] P. Salmon, G. Neilson, and J. Enderby, J. Phys. C 21, 1335(1988).
    [5] S. Ansell, R. Tromp, and G. Neilson, J. Phys.:Condens. Matter. 7, 1513(1995).
    [6] N. R. Texler, S. Holdway, G. W. Neilson, and B. M. Rode, J. Chem. Soc. Faraday Trans. 94, 59(1998).
    [7] P. Dangelo, E. Bottari, M. R. Festa, H. F. Nolting, and N. V. Pavel, J. Chem. Phys. 107, 2807(1997).
    [8] D. Yang and W. Y. Xu, Spectrosc. Spect. Anal. 31, 2742(2011).
    [9] D. Schroder, L. Duchackova, J. Tarabek, M. Karwowska, K. J. Fijalkowski, M. Oncak, and P. Slavicek, J. Am. Chem. Soc. 133, 2444(2011).
    [10] T. Wende, N. Heine, T. I. Yacovitch, K. R. Asmis, D. M. Neumark, and L. Jiang, Phys. Chem. Chem. Phys. 18, 267(2016).
    [11] R. Z. Li, C. W. Liu, Y. Q. Gao, H. Jiang, H. G. Xu, and W. J. Zheng, J. Am. Chem. Soc. 135, 5190(2013).
    [12] K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, Science 328, 1006(2010).
    [13] H. Zhao, J. H. Chang, A. Boika, and A. J. Bard, Anal. Chem. 85, 7696(2013).
    [14] Y. Meng and A. J. Bard, Anal. Chem. 87, 3498(2015).
    [15] R. T. Zhang and W. Zhuang, J. Chem. Phys. 140, 054507(2014).
    [16] C. DeKock and D. Gruen. J. Chem. Phys. 44, 4387(1966).
    [17] B. Scholz, H. D. Lüdemann, and E. Franck, Bunsen Gesell. Physikal. Chem. Ber. 76, 406(1972).
    [18] M. Khan and M. Schwing-Weill, Inorg. Chem. 15, 2202(1976).
    [19] J. Bjerrum, Acta Chem. Scand. A 41, 328(1987).
    [20] J. Brugger, D. C. McPhail, J. Black, and L. Spiccia, Geochim. Cosmochim. Acta. 65, 2691(2001).
    [21] P. De Vreese, N. R. Brooks, K. van Hecke, L. Vvan Meervelt, E. Matthijs, K. Binnemans, and R. van Deun, Inorg. Chem. 51, 4972(2012).
    [22] N. Zhang, Q. B. Zhou, X. Yin, and D. W. Zeng, J. Solut. Chem. 43, 326(2014).
    [23] H. J. Li, H. B. Yi, and J. J. Xu, Geochim. Cosmochim. Acta 165, 1(2015).
    [24] L. Trevani, J. Ehlerova, J. Sedlbauer, and P. R. Tremaine, Int. J. Hydrog. Energy. 35, 4893(2010).
    [25] N. Zhang, D. W. Zeng, G. Hefter, and Q. Y. Chen, J. Mol. Liq. 198, 200(2014).
    [26] F. F. Xia, H. B. Yi, and D. W. Zeng, J. Phys. Chem. A 113, 14029(2009).
    [27] F. F. Xia, H. B. Yi, and D. W. Zeng, J. Phys. Chem. A 114, 8406(2010).
    [28] H. B. Yi, F. F. Xia, Q. B. Zhou, and D. W. Zeng, J. Phys. Chem. A 115, 4416(2011).
    [29] K. Lin, X. G. Zhou, S. L. Liu, and Y. Luo, Chin. J. Chem. Phys. 26, 121(2013).
    [30] C. Q. Tang, K. Lin, X. G. Zhou, and S. L. Liu, Chin. J. Chem. Phys. 29, 129(2016).
    [31] Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou, and S. Liu, J. Raman Spectrosc. 47, 1231(2016).
    [32] J. Tomlinson-Phillips, J. Davis, D. Ben-Amotz, D. Spangberg, L. Pejov, and K. Hermansson, J. Phys. Chem. A 115, 6177(2011).
    [33] B. M. Rankin and D. Ben-Amotz, J. Am. Chem. Soc. 135, 8818(2013).
    [34] J. J. Max, V. Gessinger, C. van Driessche, P. Larouche, and C. Chapados, J. Chem. Phys. 126, 184507(2007).
    [35] J. J. Max and C. Chapados, J. Chem. Phys. 130, 124513(2009).
    [36] Y. Okazaki, T. Taniuchi, G. Mogami, N. Matubayasi, and M. Suzuki, J. Phys. Chem. A 118, 2922(2014).
    [37] M. Barakzehi, S. H. Amirshahi, S. Peyvandi, and M. G. Afjeh. J. Opt. Soc. Am. A 30, 1862(2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1033) PDF downloads(506) Cited by()

Proportional views
Related

Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra

doi: 10.1063/1674-0068/30/cjcp1711211

Abstract: The microstructure of aqueous CuCl2 has been studied through lots of technologies for many years; however, it remains a controversial subject. In this study, a new spectroscopic method has been proposed to analyze the UV-visible spectra of thin film of CuCl2/H2O solutions at different concentrations. This method is the combination of ratio spectra, difference spectra and second order difference spectra. By using this method, two new bands at ~230 and ~380 nm are obviously observed. The bands are assigned as the contacted ion pairs[CuCl3(H2O)n]- or[CuCl4(H2O)n]2-, which demonstrates that ion pairs exist in the CuCl2/H2O solution. Such finding agrees with the recent theoretical spectra obtained by time-dependent density functional theory. Furthermore, the populations of the contacted ion pairs are discussed. This study not only offers the direct spectroscopic evidence of[CuCl3(H2O)n]- or[CuCl4(H2O)n]2- in aqueous CuCl2, but also suggests that the spectroscopic analysis method is powerful to extract the weak bands in a strong overlapping spectrum.

Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211
Citation: Si-wen Ju, Ning Zhang, Zhi-qiang Wang, Rui-ting Zhang, De-wen Zeng, Xiao-peng Shao, Ke Lin. Contacted Ion Pairs in Aqueous CuCl2 by the Combination of Ratio Spectra, Difference Spectra, Second Order Difference Spectra in the UV-Visible Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 657-663. doi: 10.1063/1674-0068/30/cjcp1711211
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return