Jie Zheng, Yu Xie, Sheng-shi Jiang, Yun-ze Long, Xin Ning, Zheng-gang Lan. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 800-810. doi: 10.1063/1674-0068/30/cjcp1711210
Citation: Jie Zheng, Yu Xie, Sheng-shi Jiang, Yun-ze Long, Xin Ning, Zheng-gang Lan. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 800-810. doi: 10.1063/1674-0068/30/cjcp1711210

Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH

doi: 10.1063/1674-0068/30/cjcp1711210
  • Received Date: 2017-11-14
  • Rev Recd Date: 2017-12-27
  • Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the longtime limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.
  • 加载中
  • [1] W. Domcke, D. R. Yarkony, and H. Köppel, Conical Intersections:Electronic Structure, Dynamics and Spectroscopy, Singapore:World Scientic, (2004).
    [2] G. Stock and M. Thoss, Adv. Chem. Phys. 131, 243(2005).
    [3] M. H. Beck, A. Jackle, G. A. Worth, and H. D. Meyer, Phys. Rep. 324, 1(2000).
    [4] H. B. Wang and M. Thoss, J. Chem. Phys. 119, 1289(2003).
    [5] U. Manthe, J. Chem. Phys. 128, 164116(2008).
    [6] U. Manthe, J. Chem. Phys. 130, 054109(2009).
    [7] O. Vendrell and H. D. Meyer, J. Chem. Phys. 134, 044135(2011).
    [8] M. Ben-Nun and T. J. Martinez, Adv. Chem. Phys. 121, 439(2002).
    [9] I. Burghardt, H. D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 111, 2927(1999).
    [10] G. A. Worth and I. Burghardt, Chem. Phys. Lett. 368, 502(2003).
    [11] S. C. Cheng, C. Y. Zhu, K. K. Liang, S. H. Lin, and D. G. Truhlar, J. Chem. Phys. 129, 024112(2008).
    [12] J. C. Tully, J. Chem. Phys. 93, 1061(1990).
    [13] G. Granucci and M. Persico, J. Chem. Phys. 126, 134114(2007).
    [14] M. H. Yang, C. Y. Huo, A. Y. Li, Y. B. Lei, L. Yu, and C. Y. Zhu, Phys. Chem. Chem. Phys. 19, 12185(2017).
    [15] M. Persico and G. Granucci, Theor. Chem. Acc. 133, 1526(2014).
    [16] L. K. Du and Z. G. Lan, J. Chem. Theory Comput. 11, 1360(2015).
    [17] L. K. Du and Z. G. Lan, J. Chem. Theory Comput. 11, 4522(2015).
    [18] H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput. Mol. Sci. 2, 242(2012).
    [19] M. Barbatti, G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksic, and H. Lischka, J. Photoch. Photobio. A 190, 228(2007).
    [20] R. Mitric, U. Werner, and V. Bonacic-Koutecky, J. Chem. Phys. 129, 164118(2008).
    [21] E. Fabiano, T. W. Keal, and W. Thiel, Chem. Phys. 349, 334(2008).
    [22] T. Nelson, S. Fernandez-Alberti, V. Chernyak, A. E. Roitberg, and S. Tretiak, J. Chem. Phys. 136, 054108(2012).
    [23] N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88, 166402(2002).
    [24] I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Mol. Struct. 914, 22(2009).
    [25] J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105(2011).
    [26] U. Müller and G. Stock, J. Chem. Phys. 107, 6230(1997).
    [27] H. D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214(1979).
    [28] H. D. Meyer and W. H. Miller, J. Chem. Phys. 71, 2156(1979).
    [29] G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578(1997).
    [30] J. Liu, J. Chem. Phys. 145, 204105(2016).
    [31] H. B. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726(1998).
    [32] S. Bonella and D. F. Coker, J. Chem. Phys. 114, 7778(2001).
    [33] S. Bonella and D. F. Coker, Chem. Phys. 268, 189(2001).
    [34] M. Karplus and R. D. Sharma, J. Chem. Phys. 43, 3259(1965).
    [35] S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190(2013).
    [36] S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112(2013).
    [37] S. J. Cotton, K. Igumenshchev, and W. H. Miller, J. Chem. Phys. 141, 084104(2014).
    [38] S. J. Cotton and W. H. Miller, J. Chem. Phys. 145, 144108(2016).
    [39] S. J. Cotton and W. H. Miller, J. Chem. Theory Comput. 12, 983(2016).
    [40] S. J. Cotton and W. H. Miller, J. Phys. Chem. A 119, 12138(2015).
    [41] G. Tao, J. Chem. Phys. 144, 094108(2016).
    [42] G. H. Tao, J. Phys. Chem. Lett. 7, 4335(2016).
    [43] G. Tao, J. Chem. Phys. 147, 044107(2017).
    [44] Y. Xie, J. Zheng, and Z. Lan, J. Chem. Phys. 142, 084706(2015).
    [45] E. Wigner, Phys. Rev. 40, 0749(1932).
    [46] M. Hillery, R. F. Oconnell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121(1984).
    [47] G. Stock and U. Müller, J. Chem. Phys. 111, 65(1999).
    [48] U. Müller and G. Stock, J. Chem. Phys. 111, 77(1999).
    [49] B. G. Levine, J. D. Coe, A. M. Virshup, and T. J. Martinez, Chem. Phys. 347, 3(2008).
    [50] M. Schroter, S. D. Ivanov, J. Schulze, S. P. Polyutov, Y. Yan, T. Pullerits, and O. Kuhn, Phys. Rep. 567, 1(2015).
    [51] Q. Meng, S. Faraji, O. Vendrell, and H. D. Meyer, J. Chem. Phys. 137, 134302(2012).
    [52] J. Zheng, Y. Xie, S. Jiang, and Z. Lan, J. Phys. Chem. C 120, 1375(2016).
    [53] S. Jiang, J. Zheng, Y. Yi, Y. Xie, F. Yuan, and Z. Lan, J. Phys. Chem. C 121, 27263(2017).
    [54] O. Vendrell and H. D. Meyer, The MCTDH Package, Version 8.5, (2011).
    [55] P. V. Parandekar and J. C. Tully, J. Chem. Theory Comput. 2, 229(2006).
    [56] W. H. Miller and S. J. Cotton, J. Chem. Phys. 142, 131103(2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1573) PDF downloads(580) Cited by()

Proportional views
Related

Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH

doi: 10.1063/1674-0068/30/cjcp1711210

Abstract: Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the longtime limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.

Jie Zheng, Yu Xie, Sheng-shi Jiang, Yun-ze Long, Xin Ning, Zheng-gang Lan. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 800-810. doi: 10.1063/1674-0068/30/cjcp1711210
Citation: Jie Zheng, Yu Xie, Sheng-shi Jiang, Yun-ze Long, Xin Ning, Zheng-gang Lan. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH[J]. Chinese Journal of Chemical Physics , 2017, 30(6): 800-810. doi: 10.1063/1674-0068/30/cjcp1711210
Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return