Lu Chen, Lei Zhang, Shen-long Jiang, Qun Zhang. Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 165-170. doi: 10.1063/1674-0068/31/cjcp1710196
Citation: Lu Chen, Lei Zhang, Shen-long Jiang, Qun Zhang. Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 165-170. doi: 10.1063/1674-0068/31/cjcp1710196

Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide

doi: 10.1063/1674-0068/31/cjcp1710196
  • Received Date: 2017-10-29
  • Rev Recd Date: 2018-01-08
  • The fluorescence quenching of Rhodamine 6G (R6G) by graphene oxide (GO) was interrogated by R6G fluorescence measurements using a set of controlled GO samples with varied C/O ratios as the quencher.The carbonyl groups on the GO nanosheet turned to play a dominant role in quenching the R6G fluorescence.The quenching in the static regime can be described by the "sphere of action" model.The significant absorption of the R6G fluorescence by the ground-state complex formed between R6G and GO was identified to be responsible for the static quenching.This work offers helpful insights into the fluorescence quenching mechanisms in the R6G/GO system.
  • 加载中
  • [1] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Com. 146, 351(2008).
    [2] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602(2008).
    [3] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385(2008).
    [4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902(2008).
    [5] W. W. Cai, Y. W. Zhu, X. S. Li, R. D. Piner, and R. S. Ruoff, Appl. Phys. Lett. 95, 123115(2009).
    [6] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359(2009).
    [7] M. Segal, Nat. Nanotechnol. 4, 612(2009).
    [8] X. Wang, L. J. Zhi, and K. Müllen, Nano Lett. 8, 323(2008).
    [9] E. J. Yoo, J, Kim. E. Hosono, H. S. Zhou. T. Kudo, and I. Honma, Nano Lett. 8, 2277(2008).
    [10] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, and Y. S. Chen, J. Phys. Chem. C 113, 13103(2009).
    [11] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611(2010).
    [12] Y. W. Zhu, S. Murali, W.W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906(2010).
    [13] Y. Wang, Z. H. Li, D. Hu, C. T. Lin, J. H. Li, and Y. H. Lin, J. Am. Chem. Soc. 132, 9274(2010).
    [14] Y. Q. Wen, F. F. Xing, S. J. He, S. P. Song, L. H. Wang, Y. T. Long, D. Li, and C. H. Fan, Chem. Commun. 46, 2596(2010).
    [15] S. J. He, B. Song, D. Li, C. F. Zhu, W. P. Qi, Y. Q. Wen, L. H. Wang, S. P. Song, H. P. Fang, and C. H. Fan, Adv. Funct. Mater. 20, 453(2010).
    [16] E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samor, and V. Palermo, J. Am. Chem. Soc. 131, 15576(2009).
    [17] J. Balapanuru, J. Yang, S. Xiao, Q. Bao, M. Jahan, L. Polavarapu, J. Wei, Q. Xu, and K. P. Loh, Angew. Chem. Int. Ed. 49, 6549(2010).
    [18] Y. Liu, C. Liu, and Y. Liu, Appl. Surf. Sci. 257, 5513(2011).
    [19] S. G. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, ACS Appl. Mater. Interfaces 4, 7069(2012).
    [20] K. L. Fan, Z. K. Guo, Z. G. Geng, G. Jing, S. L. Jiang, J. H. Hu, and Q. Zhang, Chin. J. Chem. Phys. 26, 252(2013).
    [21] Y. Z. Zhao, K. X. Li, Z. M. He, Y. M. Zhang, Y. Zhao, H. Q. Zhang, and Z. C. Miao, Molecules 21, 1642(2016).
    [22] Q. Zhang, H. J. Zheng, Z. G. Geng, S. L. Jiang, J. Ge, K. L. Fan, S. Duan, Y. Chen, X. P. Wang, and Y. Luo, J. Am. Chem. Soc. 135, 12468(2013).
    [23] X. Y. Yang, X. B. Wang, J. Li, J. Yang, L. Wan, and J. C. Wang, Chem. J. Chin. Univ. 33, 1902(2012).
    [24] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, New York:Springer, 278(2006).
    [25] R. Heyrovska, Physics 0804, 4086(2008).
    [26] Y. Lu and A. Penzkofer, Chem. Phys. 107, 175(1986).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(674) PDF downloads(544) Cited by()

Proportional views
Related

Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide

doi: 10.1063/1674-0068/31/cjcp1710196

Abstract: The fluorescence quenching of Rhodamine 6G (R6G) by graphene oxide (GO) was interrogated by R6G fluorescence measurements using a set of controlled GO samples with varied C/O ratios as the quencher.The carbonyl groups on the GO nanosheet turned to play a dominant role in quenching the R6G fluorescence.The quenching in the static regime can be described by the "sphere of action" model.The significant absorption of the R6G fluorescence by the ground-state complex formed between R6G and GO was identified to be responsible for the static quenching.This work offers helpful insights into the fluorescence quenching mechanisms in the R6G/GO system.

Lu Chen, Lei Zhang, Shen-long Jiang, Qun Zhang. Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 165-170. doi: 10.1063/1674-0068/31/cjcp1710196
Citation: Lu Chen, Lei Zhang, Shen-long Jiang, Qun Zhang. Mechanistic Insights into the Fluorescence Quenching of Rhodamine 6G by Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 165-170. doi: 10.1063/1674-0068/31/cjcp1710196
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return