Guan-jun Wang, Ming-fei Zhou. Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 1-11. doi: 10.1063/1674-0068/31/cjcp1710192
Citation: Guan-jun Wang, Ming-fei Zhou. Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 1-11. doi: 10.1063/1674-0068/31/cjcp1710192

Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions

doi: 10.1063/1674-0068/31/cjcp1710192
  • Received Date: 2017-10-20
  • Binuclear transition metal carbonyl clusters serve as the simplest models in understanding metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporization/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric structures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metal-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.
  • 加载中
  • [1] See for example: R. B. King, Acc. Chem. Res. 3, 417 (1970).
    [2] See for example: P. J. Dyson, Coord. Chem. Rev. 248, 2443 (2004).
    [3] E. R. Davidson, K. L. Kunze, F. B. C. Machado, and S. J. Chakravorty, Acc. Chem. Res. 26, 628 (1993).
    [4] G. Frenking and N. Fröhlich, Chem. Rev. 100, 717 (2000).
    [5] P. Macchi and A. Sironi, Coord. Chem. Rev. 238/239, 383 (2003).
    [6] M. C. Baird, J. Organometallic Chem. 751, 50 (2014).
    [7] F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, 6th Edn., New York: John Wiley, (1999).
    [8] H. Willner and F. Aubke, Angew. Chem. Int. Ed. 36, 2403 (1997).
    [9] Q. Xu, Coord. Chem. Rev. 231, 83 (2002).
    [10] M. F. Zhou, L. Andrews, and C. W. Bauschlicher, Chem. Rev. 101, 1931 (2001).
    [11] M. Poliakoff and E. Weitz, Acc. Chem. Res. 20, 408 (1987).
    [12] E. Weitz, J. Phys. Chem. 98, 11256 (1994).
    [13] See for example: K. M. Ervin, Int. Rev. Phys. Chem. 20, 127 (2001).
    [14] P. C. Engelking and W. C. Lineberger, J. Am. Chem. Soc. 101, 5579 (1979).
    [15] P. W. Villalta and D. G. Leopold, J. Chem. Phys. 98, 7730 (1993).
    [16] A. A. Bengali, S. M. Casey, C. L. Cheng, J. P. Dick, P. T. Fenn, P. W. Villalta, and D. G. Leopold, J. Am. Chem. Soc. 114, 5257 (1992).
    [17] G. Ganteför, G. S. IckingKonert, H. Handschuh, and W. Eberhardt, Int. J. Mass Spectrom. Ion Process. 159, 81 (1996).
    [18] G. S. IckingKonert, H. Handschuh, G. Ganteför, and W. Eberhardt, Phys. Rev. Lett. 76, 1047 (1996).
    [19] B. Chatterjee, F. A. Akin, C. C. Jarrold, and K. Raghavachari, J. Chem. Phys. 119, 10591 (2003).
    [20] C. P. Butcher, B. F. G. Johnson, J. S. McIndoe, X. Yang, X. B. Wang, and L. S. Wang, J. Chem. Phys. 116, 6560 (2002).
    [21] Z. L. Liu, H. Xie, Z. B. Qin, R. Cong, X. Wu, Z. C. Tang, X. Lu, and J. He, J. Chem. Phys. 137, 204302 (2012).
    [22] Z. L. Liu, H. Xie, Z. B. Qin, H. J. Fan, and Z. C. Tang, Inorg. Chem. 53, 10909 (2014).
    [23] J. H. Zou, H. Xie, D. X. Dai, Z. C. Tang, and L. Jiang, J. Chem. Phys. 145, 184302 (2016).
    [24] J. H. Zou, H. Xie, Q. Q. Yuan, J. M. Zhang, H. J. Fan, D. X. Dai, Z. C. Tang, and L. Jiang, Phys. Chem. Chem. Phys. 19, 9790 (2017).
    [25] Z. L. Liu, H. Xie, J. H. Zou, H. J. Fan, and Z. C. Tang, J. Chem. Phys. 146, 244316 (2017).
    [26] M. Okumura, L. I. Yeh, J. D. Myers, and Y. T. Lee, J. Chem. Phys. 85, 2328 (1986).
    [27] T. Ebata, A. Fujii, and N. Mikami, Int. Rev. Phys. Chem. 17, 331 (1998).
    [28] E. J. Bieske and O. Dopfer, Chem. Rev. 100, 3963 (2000).
    [29] W. H. Robertson and M. A. Johnson, Annu. Rev. Phys. Chem. 54, 173 (2003).
    [30] M. A. Duncan, Int. Rev. Phys. Chem. 22, 407 (2003).
    [31] J. Lemaire, P. Boissel, M. Heninger, G. Mauclaire, G. Bellec, H. Mestdagh, A. Simon, S. L. Caer, J. M. Ortega, F. Glotin, and P. Maitre, Phys. Rev. Lett. 89, 273002 (2002).
    [32] A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, and D. M. Rayner, J. Phys. Chem. B 108, 14591 (2004).
    [33] D. T. Moore, J. Oomens, J. R. Eyler, G. Meijer, G. von Helden, and D. P. Ridge, J. Am. Chem. Soc. 126, 14726 (2004).
    [34] A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, and D. M. Rayner, J. Chem. Phys. 124, 194305 (2006).
    [35] A. Fielicke, G. von Helden, G. Meijer, B. Simard, and D. M. Rayner, J. Phys. Chem. B 109, 23935 (2005).
    [36] A. Fielicke, G. von Helden, G. Meijer, D. B. Pedersen, B. Simard, and D. M. Rayner, J. Am. Chem. Soc. 127, 8416 (2005).
    [37] J. Velasquez Ⅲ and M. A. Duncan, Chem. Phys. Lett. 461, 28 (2008).
    [38] J. Velasquez Ⅲ, B. Njegic, M. S. Gordon, and M. A. Duncan, J. Phys. Chem. A 112, 1907 (2008).
    [39] Z. D. Reed and M. A. Duncan, J. Am. Soc. Mass Spectrom. 21, 739 (2010).
    [40] A. M. Ricks, Z. D. Reed, and M. A. Duncan, J. Am. Chem. Soc. 131, 9176 (2009).
    [41] A. D. Brathwaite, Z. D. Reed, and M. A. Duncan, J. Phys. Chem. A 115, 10461(2011).
    [42] A. M. Ricks, A. D. Brathwaite, and M. A. Duncan, J. Phys. Chem. A 117, 1001 (2013).
    [43] A. D. Brathwaite and M. A. Duncan, J. Phys. Chem. A 117, 11695 (2013).
    [44] A. D. Brathwaite, J. A. Maner, and M. A. Duncan, Inorg. Chem. 53, 1166 (2014).
    [45] H. Xie, J. Wang, Z. B. Qin, L. Shi, Z. C. Tang, and X. P. Xing, J. Phys. Chem. A 118, 9380 (2014).
    [46] A. M. Ricks, Z. E. Reed, and M. A. Duncan, J. Mol. Spectrosc. 266, 63 (2011).
    [47] C. X. Chi, J. M. Cui, X. P. Xing, G. J. Wang, Z. P. Liu, and M. F. Zhou, Chem. Phys. Lett. 542, 33 (2012).
    [48] G. J. Wang, J. M. Cui, C. X. Chi, X. J. Zhou, Z. H. Li, X. P. Xing, and M. F. Zhou, Chem. Sci. 3, 3272 (2012).
    [49] C. X. Chi, J. M. Cui, Z. H. Li, X. P. Xing, G. J. Wang, and M. F. Zhou, Chem. Sci. 3, 1698 (2012).
    [50] J. M. Cui, X. P. Xing, C. X. Chi, G. J. Wang, Z. P. Liu, and M. F. Zhou, Chin. J. Chem. 30, 2131 (2012).
    [51] X. J. Zhou, J. M. Cui, Z. H. Li, G. J. Wang, and M. F. Zhou, J. Phys. Chem. A 116, 12349 (2012).
    [52] X. J. Zhou, J. M. Cui, Z. H. Li, G. J. Wang, Z. P. Liu, and M. F. Zhou, J. Phys. Chem. A 117, 1514 (2013).
    [53] J. M. Cui, X. J. Zhou, G. J. Wang, C. X. Chi, Z. P. Liu, and M. F. Zhou, J. Phys. Chem. A 117, 7810 (2013).
    [54] J. M. Cui, G. J. Wang, X. J. Zhou, C. X. Chi, Z. H. Li, Z. P. Liu, and M. F. Zhou, Phys. Chem. Chem. Phys. 15, 10224 (2013).
    [55] J. M. Cui, X. J. Zhou, G. J. Wang, C. X. Chi, Z. H. Li, and M. F. Zhou, J. Phys. Chem. A 118, 2719 (2014).
    [56] N. Zhang, M. B. Luo, C. X. Chi, G. J. Wang, J. M. Cui and M. F. Zhou, J. Phys. Chem. A 119, 4142 (2015).
    [57] H. Qu, F. C. Kong, G. J. Wang, and M. F. Zhou, J. Phys. Chem. A 120, 7287 (2016).
    [58] H. Qu, F. C. Kong, G. J. Wang, and M. F. Zhou, J. Phys. Chem. A 121, 1628 (2017).
    [59] C. X. Chi, J. Q. Wang, H. Qu, W. L. Li, L. Y. Meng, M. B. Luo, J. Li, and M. F. Zhou, Angew. Chem. Int. Ed. 56, 6932 (2017).
    [60] G. J. Wang, C. X. Chi, J. M. Cui, X. P. Xing, and M. F. Zhou, J. Phys. Chem. A 116, 2484 (2012).
    [61] G. J. Wang, C. X. Chi, X. P. Xing, C. F. Ding, and M. F. Zhou, Sci. China Chem. 57, 172 (2014).
    [62] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
    [63] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
    [64] C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).
    [65] S. F. Sousa, P. A. Fernandes, and M. J. Ramos, J. Phys. Chem. A 111, 10439 (2007).
    [66] M. K. Assefa, J. L. Devera, A. D. Brathwaite, J. D. Mosley, and M. A. Duncan, Chem. Phys. Lett. 640, 175 (2015).
    [67] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochter-ski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A02, Pittsburgh, PA: Gaussian, Inc., (2009).
    [68] E. K. Parks, K. P. Kerns, and S. J. Riley, J. Chem. Phys. 112, 3384 (2000).
    [69] M. J. S. Dewar, Bull. Soc. Chim. Fr. 18, C71 (1951).
    [70] J. Chatt and L. A. Duncanson, J. Chem. Soc. 2939 (1953).
    [71] R. K. Szilagyi and G. Frenking, Organometallics, 16, 4807 (1997).
    [72] A. J. Lupinetti, V. Jonas, W. Thiel, S. H. Strauss, and G. Frenking, Chem. Eur. J. 5, 2573 (1999).
    [73] A. Diefenbach, F. M. Bickelhaupt, and G. Frenking, J. Am. Chem. Soc. 122, 6449 (2000).
    [74] A. J. Lupinetti, G. Frenking, and S. H. Strauss, Angew. Chem. Int. Ed. 37, 2113 (1998).
    [75] A. J. Lupinetti, S. H. Strauss, and G. Frenking, Prog. Inorg. Chem. 49, 1 (2001).
    [76] A. J. Lupinetti, S. Fau, G. Frenking, and S. H. Strauss, J. Phys. Chem. A 101, 9551 (1997).
    [77] A. S. Goldman and K. Krogh-Jespersen, J. Am. Chem. Soc. 118, 12159 (1996).
    [78] M. H. Chen, Q. N. Zhang, M. F. Zhou, D. M. Andrada, and G. Frenking, Angew. Chem. Int. Ed. 54, 124 (2015).
    [79] F. A. Cotton, B. A. Frenz, and L. Kruczynski, J. Am. Chem. Soc. 95, 951 (1973).
    [80] M. Manassero, M. Sansoni, and G. Longoni, J. Chem. Soc. Chem. Commun. 919 (1976).
    [81] R. Colton and M. J. McCormick, Coord. Chem. Rev. 31, 1 (1980).
    [82] L. Jiang and Q. Xu, J. Am. Chem. Soc. 127, 42 (2005).
    [83] Q. Xu, L. Jiang, and N. Tsumori, Angew. Chem. Int. Ed. 44, 4338 (2005).
    [84] M. F. Zhou, X. Jin, and J. Li, J. Phys. Chem. A 110, 10206 (2006).
    [85] X. Jin, L. Jiang, Q. Xu, and M. F. Zhou, J. Phys. Chem. A 110, 12585 (2006).
    [86] L. Jiang, X. Jin, M. F. Zhou, and Q. Xu, J. Phys. Chem. A 112, 3627 (2008).
    [87] J. H. Osborne, A. L. Rheingold, and W. C. Trogler, J. Am. Chem. Soc. 107, 6292 (1985).
    [88] Z. Zhang, Q. S. Li, Y. M. Xie, R. B. King, and H. F. Schaefer, J. Phys. Chem. A 114, 4672 (2010).
    [89] L. S. Sunderlin, D. Wang, and R. R. Squires, J. Am. Chem. Soc. 114, 2788 (1992).
    [90] B. Simard, M. A. Lebeault-Dorget, A. Marijnissen, and ter J. J. Meulen, J. Chem. Phys. 108, 9668 (1998).
    [91] K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 (1984).
    [92] Y. M. Xie, H. F. Schaefer Ⅲ, and R. B. King, J. Am. Chem. Soc. 122, 8746 (2000).
    [93] I. S. Ignatyev, H. F. Schaefer Ⅲ, R. B. King, and S. T. Brown, J. Am. Chem. Soc. 122, 1989 (2000).
    [94] F. A. Cotton and J. M. Troup, J. Chem. Soc. Dalton Trans. 800 (1974).
    [95] H. Jacobsen and T. Ziegler, J. Am. Chem. Soc. 118, 4631 (1996).
    [96] L. Bertini, M. Bruschi, L. De Gioia, and P. Fantucci, J. Phys. Chem. A 111, 12152 (2007).
    [97] R. A. Friedel, I.Wender, S. L. Shu er, and H. W. Sternberg, J. Am. Chem. Soc. 77, 3951 (1955).
    [98] I. Swart, F. M. F. de Groot, B. M. Weckhuysen, D. M. Rayner, G. Meijer, and A. Fielicke, J. Am. Chem. Soc. 130, 2126 (2008).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1394) PDF downloads(1159) Cited by()

Proportional views
Related

Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions

doi: 10.1063/1674-0068/31/cjcp1710192

Abstract: Binuclear transition metal carbonyl clusters serve as the simplest models in understanding metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporization/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric structures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metal-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.

Guan-jun Wang, Ming-fei Zhou. Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 1-11. doi: 10.1063/1674-0068/31/cjcp1710192
Citation: Guan-jun Wang, Ming-fei Zhou. Infrared Spectra, Structures and Bonding of Binuclear Transition Metal Carbonyl Cluster Ions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 1-11. doi: 10.1063/1674-0068/31/cjcp1710192
Reference (98)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return