Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. doi: 10.1063/1674-0068/31/cjcp1708181
Citation: Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. doi: 10.1063/1674-0068/31/cjcp1708181

Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps

doi: 10.1063/1674-0068/31/cjcp1708181
  • Received Date: 2017-09-28
  • Rev Recd Date: 2018-01-09
  • Cadmium-doped zinc oxide nanocrystals in the quantum confinement region have been firstly synthesized by a fast and facile sonochemical method.The alloyed structure of the nanocrystals is confirmed by X-ray diffraction,transmission electron microscopy,and infrared analysis.With the increase of cadmium to zinc molar ratio from 0 to 2.0,the crystallite sizes of the samples decrease from 5.1 nm to 2.6 nm,and the band gaps of the samples show a red shift then a blue shift,and a red shift again.The variations of band gaps of the samples can be interpreted by the crystallite size and the composition.It is found that both the non-thermal equilibrium environment established in the sonochemical reaction and the coordination ability of triethylene glycol solvent play crucial roles in the current preparation.
  • 加载中
  • [1] M. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A. A. Gunther, D. Kasemann, D. Andrienko, and K. Leo, Science 352, 1446(2016).
    [2] A. M. Smith and S. Nie, Acc. Chem. Res. 43, 190(2009).
    [3] M. D. Regulacio and M. Y. Han, Acc. Chem. Res. 43, 621(2010).
    [4] H. Wei, S. Z. Chen, X. L. Ren, B. J. Qian, Y. J Su, Z. Yang, and Y. F. Zhang, CrystEngComm 14, 7408(2012).
    [5] H. Wei, Y. J. Su, Z. Y. Han, T. T. Li, X. L. Ren, Z. Yang, L. M. Wei, F. S. Cong, and Y. F. Zhang, Nanotechnology 24, 235706(2013).
    [6] H. Wei, X. L. Ren, Z. Y. Han, T. T. Li, Y. J. Su, L. M. Wei, F. S. Cong, and Y. F. Zhang, Mater. Lett. 102, 94(2013).
    [7] A. B. Djurisic and Y. H. Leung, Small 2, 944(2006).
    [8] B. Wen, C. Q. Liu, N. Wang, H. L. Wang, S. M. Liu, W. Y. Ding, W. D. Fei, and W. P. Chai, Chin. J. Chem. Phys. 29, 229(2016).
    [9] N. Kumar and A. Srivastava, J. Alloys Compd. 706, 438(2017).
    [10] J. Zhang, S. Q. Zhao, K. Zhang, and J. Q. Zhou, Chemosphere 95, 105(2014).
    [11] M. A. Mansoor, M. A. Ehsan, V. McKee, N. M. Huang, M. Ebadi, Z. Arifin, W. Z. Basiruna, and M. Mazhar, J. Mater. Chem. 17, 5284(2013).
    [12] S. Chu and G. Wang, Mater. Lett. 85, 149(2102).
    [13] J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, Appl. Phys. Lett. 89, 091914(2006).
    [14] A. A. Jacob, L. Balakrishnan, S. R. Meher, K. Shambavi, and Z. C. Alex, J. Alloys Compd. 695, 3753(2017).
    [15] B. Khodadadi, M. Bordbar, and A. Y. Faal, J. Sol-Gel Sci. Tech. 77, 521(2016).
    [16] D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, Appl. Phys. Lett. 102, 232103(2013).
    [17] J. J. Hinman and K. S. Suslick, Top. Curr. Chem. 375, 12(2017).
    [18] J. H. Bang and K. S. Suslick, Adv. Mater. 22, 1039(2010).
    [19] D. G. Shchukin and H. Mohwald, Phys. Chem. Chem. Phys. 8, 3496(2006).
    [20] A. Phuruangrat, S. Mad-ahin, O. Yayapao, S. Thongtem, and T. Thongtem, Res. Chem. Intermed. 41, 9757(2015).
    [21] H. X. Zhang, B. Gao, Y. T. Yang, and X. J. Liu, Int. J. Thermophys. 36, 1336(2015).
    [22] B. Gao, Y. T. Yang, H. Yang, S. Y. Zhang, and X. J. Liu, Sci. China-Phys. Mech. Astron. 56, 1280(2013).
    [23] Y. Wang, Y. T. Yang, X. G. Zhang, X. J. Liu, and A. Nakamura, CrystEngComm 14, 240(2012).
    [24] T. Noorunisha, V. S. Nagarethinam, M. Suganya, D. Praba, S. Ilangovan, K. Usharani, and A. R. Balu, Optik 127, 2822(2106).
    [25] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301(2005).
    [26] A. Wood, M. Giersig, M. Hilgendorff, A. V. Campos, L. M. Marzan, and P. Mulvaney, Aust. J. Chem. 56, 1051(2003).
    [27] O. Vigil, L. Vaillant, F. Cruz, G. Santana, A. M. Acevedo, and G. C. Puente, Thin Solid Films 361, 53(2000).
    [28] L. Vegard, Z. Phys. 5, 17(1921).
    [29] L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, J. Am. Chem. Soc. 128, 12299(2006).
    [30] A. Burns, G. Hayes, W. Lia, J. Hirvonen, J. D. Demaree, and S. I. Shah, Mater. Sci. Eng. B 111, 150(2004).
    [31] H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, and P. Roth, J. Mater. Sci. 37, 4349(2002).
    [32] M. A. Verges, A. Mifsud, and C. J. Serna, J. Chem. Soc. Faraday Trans. 86, 959(1990).
    [33] J. I. Pankove, Optical Processes in Semiconductors, New York: Englewood Cliffs, 34(1971).
    [34] X. F. Fan, H. D. Sun, Z. X. Shen, J. L. Kuo, and Y. M. Lu, J. Phys.: Condens. Matter 20, 235221(2008).
    [35] J. E. Bernard and A. Zunger, Phys. Rev. B 36, 3199(1987).
    [36] K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208(2005).
    [37] B. J. Zheng, J. S. Lian, L. Zhao, and Q. Jiang, Appl. Surf. Sci. 257, 5657(2011).
    [38] D. W. Ma, Z. Z. Ye, and Y. S. Yang, Appl. Phys. B 82, 85(2006).
    [39] X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, Appl. Phys. Lett. 89, 151909(2006).
    [40] I. A. Buyanova, X. J. Wang, W. M. Chen, M. Izadifard, D. P. Norton, S. J. Peartonc, A. Osinsky, J. W. Dong, and A. Dabiran, ECS Trans. 3, 391(2006).
    [41] X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White, and W. Knoll, J. Am. Chem. Soc. 125, 8589(2003).
    [42] E. A. Meulenkamp, J. Phys. Chem. B 102, 5566(1998).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(565) PDF downloads(689) Cited by()

Proportional views
Related

Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps

doi: 10.1063/1674-0068/31/cjcp1708181

Abstract: Cadmium-doped zinc oxide nanocrystals in the quantum confinement region have been firstly synthesized by a fast and facile sonochemical method.The alloyed structure of the nanocrystals is confirmed by X-ray diffraction,transmission electron microscopy,and infrared analysis.With the increase of cadmium to zinc molar ratio from 0 to 2.0,the crystallite sizes of the samples decrease from 5.1 nm to 2.6 nm,and the band gaps of the samples show a red shift then a blue shift,and a red shift again.The variations of band gaps of the samples can be interpreted by the crystallite size and the composition.It is found that both the non-thermal equilibrium environment established in the sonochemical reaction and the coordination ability of triethylene glycol solvent play crucial roles in the current preparation.

Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. doi: 10.1063/1674-0068/31/cjcp1708181
Citation: Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. doi: 10.1063/1674-0068/31/cjcp1708181
Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return