Lin Ju, Ying Dai, Tong-shuai Xu, Yong-jia Zhang, Li Sun. Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 177-183. doi: 10.1063/1674-0068/31/cjcp1708163
Citation: Lin Ju, Ying Dai, Tong-shuai Xu, Yong-jia Zhang, Li Sun. Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 177-183. doi: 10.1063/1674-0068/31/cjcp1708163

Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study

doi: 10.1063/1674-0068/31/cjcp1708163
  • Received Date: 2017-08-26
  • Rev Recd Date: 2017-11-30
  • The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na,Bi and Ti vacancy,the Na vacancy is more stable than the others.Therefore,we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered,the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated,which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results,our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably,because of taking into account adsorbed oxygen and cation vacancies.Moreover,our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.
  • 加载中
  • [1] L. E. Cross, Ferroelectrics 151, 305(1994).
    [2] Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, Appl. Phys. Lett. 73, 3683(1998).
    [3] Y. Guo, M. Gu, H. Luo, Y. Liu, and R. L. Withers, Phys. Rev. B 83, 054118(2011).
    [4] Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 105, 084112(2009).
    [5] W. Jo, T. Granzow, E. Aulbach, J. Rodel, and D. Damjanovic, J. Appl. Phys. 105, 094102(2009).
    [6] J. E. Daniels, W. Jo, J. Roedel, and J. L. Jones, Appl. Phys. Lett. 95, 032904(2009).
    [7] J. Kreisel, P. Bouvier, B. Dkhil, P. A. Thomas, A. M. Glazer, T. R. Welberry, B. Chaabane, and M. Mezouar, Phys. Rev. B 68, 014113(2003).
    [8] V. A. Shuvaeva, D. Zekria, A. M. Glazer, Q. Jiang, S. M. Weber, P. Bhattacharya, and P. A. Thomas, Phys. Rev. B 71, 174114(2005).
    [9] X. Liu and X. Tan, Adv. Mater. 28, 574(2016).
    [10] M. Li, M. J. Pietrowski, R. A. De Souza, H. Zhang, I. M. Reaney, S. N. Cook, J. A. Kilner, and D. C. Sinclair, Nat. Mater. 13, 31(2014).
    [11] M. Li, H. Zhang, S. N. Cook, L. Li, J. A. Kilner, I. M. Reaney, and D. C. Sinclair, Chem. Mater. 27, 629(2015).
    [12] M. K. Niranjan, T. Karthik, S. Asthana, J. Pan, and U. V. Waghmare, J. Appl. Phys. 113, 194106(2013).
    [13] H. Lü, S. Wang, and X. Wang, J. Appl. Phys. 115, 124107(2014).
    [14] R. Bujakiewicz-Korónska and Y. Natanzon, Phase Transit. 81, 1117(2008).
    [15] L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qin, and J. Hu, J. Appl. Phys. 116, 083909(2014).
    [16] J. A. Dawson, H. Chen, and I. Tanaka, J. Mater. Chem. A 3, 16574(2015).
    [17] X. He and Y. Mo, Phys. Chem. Chem. Phys. 17, 18035(2015).
    [18] M. Bousquet, J. R. Duclère, E. Orhan, A. Boulle, C. Bachelet, and C. Champeaux, J. Appl. Phys. 107, 104107(2010).
    [19] P. Petrov, H. Guhl, and W. Miller, Phys. Status Solidi B 245, 2649(2008).
    [20] Y. Zhang, J. Hu, F. Gao, H. Liu, and H. Qin, Comput. Theor. Chem. 967, 284(2011).
    [21] N. A. Spaldin and M. Fiebig, Science 309, 391(2005).
    [22] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 422, 759(2006).
    [23] Y. Tokura, Science 312, 1481(2006).
    [24] J. F. Scott, Nat Mater. 6, 256(2007).
    [25] X. Q. Zhang, Y. Sui, X. J. Wang, Y. Wang, and Z. Wang, J. Alloys Compd. 507, 157(2010).
    [26] S. Dong and J. M. Liu, Mod. Phys. Lett. B 26, 1230004(2012).
    [27] J. G. Wu and J. Wang, J. Alloys Compd. 507, 4(2010).
    [28] X. D. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen, C. H. Ko, and J. C. A. Huang, J. Eur. Ceram. Soc. 30, 283(2010).
    [29] F. Yan, T. J. Zhu, M. O. Lai, and L. Lu, Scripta Mater. 63, 780(2010).
    [30] S. K. Pradhan, J. Das, P. P. Rout, V. R. Mohanta, S. K. Das, S. Samantray, D. R. Sahu, J. L. Huang, S. Verma, and B. K. Roul, J. Phys. Chem. Solids 71, 1557(2010).
    [31] J. Liu, M. Y. Li, L. Pei, J. Wang, B. F. Yu, X. Wang, and X. Z. Zhao, J. Alloys Compd. 493, 544(2010).
    [32] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55(2003).
    [33] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719(2003).
    [34] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B, 67, 180401(R) (2003).
    [35] N. Abe, K. Taniguchi, S. Ohtani, H. Umetsu, and T. Arima, Phys. Rev. B 80, 020402(R) (2009).
    [36] D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Appl. Phys. Lett. 88, 212907(2006).
    [37] S. Chrétien and H. Metiu, J. Chem. Phys. 128, 044714(2008).
    [38] P. Ferro, R. Moroni, M. Salvietti, M. Canepa, and L. Mattera, Surf. Sci. 407, 212(1998).
    [39] S. Bandow, T. Yamaguchi, and S. lijima, Chem. Phys. Lett. 401, 380(2005).
    [40] S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman, and J. Wu, Nano Lett. 13, 2831(2013).
    [41] L. Ju, T. Xu, Y. Zhang, C. Shi, and L. Sun, Appl. Surf. Sci. 412, 77(2017).
    [42] P. E. BlÖchl, Phys. Rev. B 50, 17953(1994).
    [43] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758(1999).
    [44] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169(1996).
    [45] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15(1996).
    [46] X. Ma, Y. Dai, L. Yu, and B. Huang, Sci. Rep. 4, 3986(2014).
    [47] M. Bousquet, J. R. Duclère, E. Orhan, A. Boulle, C. Bachelet, and C. Champeaux, J. Appl. Phys. 107, 104107(2010).
    [48] L. Ju, T. Xu, C. Shi, L. Zhao, and L. Sun, J. Mater. Sci.: Mater Electron. 27, 5434(2016).
    [49] L. Ju, C. Shi, T. Li, Y. Hao, H. Qin, and M. Zhao, J. Hu, RSC Adv. 5, 31984(2015).
    [50] G. O. Jones and P. A. Thomas, Acta Crystallogr. B 58, 168(2002).
    [51] A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin, Nature 391, 874(1998).
    [52] S. Grimme, J. Comput. Chem. 27, 1787(2006).
    [53] D. Cao, M. Q. Cai, Y. Zheng, and W. Y. Hu, Phys. Chem. Chem. Phys. 11, 10934(2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(671) PDF downloads(401) Cited by()

Proportional views
Related

Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study

doi: 10.1063/1674-0068/31/cjcp1708163

Abstract: The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na,Bi and Ti vacancy,the Na vacancy is more stable than the others.Therefore,we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered,the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated,which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results,our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably,because of taking into account adsorbed oxygen and cation vacancies.Moreover,our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.

Lin Ju, Ying Dai, Tong-shuai Xu, Yong-jia Zhang, Li Sun. Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 177-183. doi: 10.1063/1674-0068/31/cjcp1708163
Citation: Lin Ju, Ying Dai, Tong-shuai Xu, Yong-jia Zhang, Li Sun. Combination Effect of Cation Vacancies and O2 Adsorption on Ferromagnetism of Na0.5Bi0.5TiO3(100) Surface: ab initio Study[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 177-183. doi: 10.1063/1674-0068/31/cjcp1708163
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return