Zuo-si Yu, Yi-yi Gao, Xiao-gang Wang, Guo-quan Zhou, Song-wei Zeng, Jun-lang Chen. Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 85-91. doi: 10.1063/1674-0068/31/cjcp1707138
Citation: Zuo-si Yu, Yi-yi Gao, Xiao-gang Wang, Guo-quan Zhou, Song-wei Zeng, Jun-lang Chen. Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 85-91. doi: 10.1063/1674-0068/31/cjcp1707138

Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide

doi: 10.1063/1674-0068/31/cjcp1707138
  • Received Date: 2017-07-10
  • Using all-atom molecular dynamics (MD) simulations, we have investigated the adsorption stability and conformation change of different proteins on the surface of pristine graphene (PG) and graphene oxide (GO). We find that: (i) with the cooperation of the electrostatic interactions between proteins and oxygen-containing groups, GO shows better adsorption stability than PG; (ii) the peptide loses its secondary structure on both PG and GO surface, and the a-helix structure of the protein fragment is partially broken on PG surface, but is well preserved on GO surface, while the secondary structure of globular protein has no distinct change on both PG and GO surface. In general, GO presents better biocompatibility than PG. Our results are of significant importance to understand the interactions between proteins and PG/GO and the applications of PG/GO in biotechnology and biomedicine.
  • 加载中
  • [1] C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, Acc. Chem. Res. 46, 2211 (2013).
    [2] H. Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A. A. Ashkarran, and M. Mahmoudi, Chem. Rev. 113, 3407 (2013).
    [3] Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Trends Biotechnol. 29, 205 (2011).
    [4] C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, Angew. Chem. 121, 4879 (2009).
    [5] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, Adv. Funct. Mater. 20, 453 (2010).
    [6] C. H. Lu, J. Li, X. L. Zhang, A. X. Zheng, H. H. Yang, X. Chen, and G. N. Chen, Anal. Chem. 83, 7276 (2011).
    [7] Z. Liu, J. T. Robinson, X. Sun, and H. Dai, J. Am. Chem. Soc. 130, 10876 (2008).
    [8] M. Wu, R. Kempaiah, P. J. J. Huang, V. Maheshwari, and J. Liu, Langmuir 27, 2731 (2011).
    [9] F. Zhang, B. Zheng, J. Zhang, X. Huang, H. Liu, S. Guo, and J. Zhang, J. Phys. Chem. C 114, 8469 (2010).
    [10] Q. Li, F. Fan, Y. Wang, W. Feng, and P. Ji, Ind. Eng. Chem. Res. 52, 6343 (2013).
    [11] J. H. Lee, Y. K. Choi, H. J. Kim, R. H. Scheicher, and J. H. Cho, J. Phys. Chem. C 117, 13435 (2013).
    [12] R. B. Pandey, Z. Kuang, B. L. Farmer, S. S. Kim, and R. R. Naik, Soft Matter 8, 9101 (2012).
    [13] S. Li, A. N. Aphale, I. G. Macwan, P. K. Patra, W. G. Gonzalez, J. Miksovska, and R. M. Leblanc, ACS Appl. Mater. Interfaces 4, 7069 (2012).
    [14] M. Zhang, X. B. Mao, C. X. Wang, W. F. Zeng, C. L. Zhang, Z. J. Li, Y. Fang, Y. L. Yang, W. Liang, and C. Wang, Biomaterials 34, 1383 (2013).
    [15] M. De, S. S. Chou, and V. P. Dravid, J. Am. Chem. Soc. 133, 17524 (2011).
    [16] X. Sun, Z. Feng, T. Hou, and Y. Li, ACS Appl. Mater. Interfaces 6, 7153 (2014).
    [17] S. Zeng, G. Zhou, J. Guo, F. Zhou, and J. Chen, Sci. Rep. 6, 24906 (2016).
    [18] G. Zuo, X. Zhou, Q. Huang, H. Fang, and R. Zhou, J. Phys. Chem. C 115, 23323 (2011).
    [19] L. Ou, Y. Luo, and G. Wei, J. Phys. Chem. B 115, 9813 (2011)
    [20] J. Chen, X. Wang, C. Dai, S. Chen, and Y. Tu, Physica E Low Dimens. Syst. Nanostruct. 62, 59 (2014).
    [21] G. Ra aini and F. Ganazzoli, Langmuir 26, 5679 (2010).
    [22] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, J. Comput. Chem. 24, 1999 (2003).
    [23] C. J. Shih, S. Lin, R. Sharma, M. S. Strano, and D. Blankschtein, Langmuir 28, 235 (2011).
    [24] Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli, Z. Liu, Q. Huang, C. Fan, H. Fang, and R. Zhou, Nat. Nanotech. 8, 594 (2013).
    [25] N. Patra, B. Wang, and P. Král, Nano Lett. 9, 3766 (2009).
    [26] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
    [27] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).
    [28] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
    [29] G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
    [30] T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
    [31] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
    [32] S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).
    [33] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1052) PDF downloads(461) Cited by()

Proportional views
Related

Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide

doi: 10.1063/1674-0068/31/cjcp1707138

Abstract: Using all-atom molecular dynamics (MD) simulations, we have investigated the adsorption stability and conformation change of different proteins on the surface of pristine graphene (PG) and graphene oxide (GO). We find that: (i) with the cooperation of the electrostatic interactions between proteins and oxygen-containing groups, GO shows better adsorption stability than PG; (ii) the peptide loses its secondary structure on both PG and GO surface, and the a-helix structure of the protein fragment is partially broken on PG surface, but is well preserved on GO surface, while the secondary structure of globular protein has no distinct change on both PG and GO surface. In general, GO presents better biocompatibility than PG. Our results are of significant importance to understand the interactions between proteins and PG/GO and the applications of PG/GO in biotechnology and biomedicine.

Zuo-si Yu, Yi-yi Gao, Xiao-gang Wang, Guo-quan Zhou, Song-wei Zeng, Jun-lang Chen. Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 85-91. doi: 10.1063/1674-0068/31/cjcp1707138
Citation: Zuo-si Yu, Yi-yi Gao, Xiao-gang Wang, Guo-quan Zhou, Song-wei Zeng, Jun-lang Chen. Comparison of Adsorption of Proteins at Di erent Sizes on Pristine Graphene and Graphene Oxide[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 85-91. doi: 10.1063/1674-0068/31/cjcp1707138
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return