Hong-hui Ning, Di Lu, Li-qun Zhou, Meng-huan Chen, Yue Li, Gao-jian Zhou, Wei-wei Peng, Zheng Wang. Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 99-110. doi: 10.1063/1674-0068/31/cjcp1707137
Citation: Hong-hui Ning, Di Lu, Li-qun Zhou, Meng-huan Chen, Yue Li, Gao-jian Zhou, Wei-wei Peng, Zheng Wang. Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 99-110. doi: 10.1063/1674-0068/31/cjcp1707137

Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane

doi: 10.1063/1674-0068/31/cjcp1707137
  • Received Date: 2017-07-06
  • By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-reduction method. And they are first used as heterogeneous catalysts for the dehydrogenation reaction of AB at room temperature. The results reveal that the as-prepared Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 exhibit the highest catalytic activities in different RuCo and RuNi molar ratios, respectively. It is worthy of note that the turnover frequency (TOF) values of Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 catalysts reached 488.1 and 417.1 mol H2 min-1 (mol Ru)-1 and the activation energies (Ea) are 31.7 and 36.0 kJ/mol, respectively. The superior catalytic performance is attributed to the bimetallic synergistic action between Ru and M, uniform distribution of metal NPs as well as bi-functional effect between RuM alloy NPs and MIL-110. Moreover, these catalysts exhibit favorable stability after 5 consecutive cycles for the hydrolysis of AB.
  • 加载中
  • [1] M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, Chem. Commun. 49, 9449 (2013).
    [2] S. T. Gao, W. H. Liu, C. Feng, N. Z. Shang, and C. Wang, Catal. Sci. Technol. 6, 869 (2016).
    [3] D. Lu, G. F. Yu, Y. Li, M. H. Chen, Y. X. Pan, L. Q. Zhou, K. Z. Yang, X. Xiong, P. Wu, and Q. H. Xia, J. Alloys Compd. 694, 662 (2017).
    [4] H. C. J. Zhou and S. Kitagawa, Chem. Soc. Rev. 43, 5415 (2014).
    [5] D. Bradshaw, A. Garai, and J. Huo, Chem. Soc. Rev. 41, 2344 (2012).
    [6] F. G. Cirujano, A. L. Pérez, A. Corma, and F. X. Llabrés i Xamena, ChemCatChem. 5, 538 (2013).
    [7] H. Furukawa, K. E. Cordova, M. O'Kee e, and O. M. Yaghi, Science 341, 1230444 (2013).
    [8] H. C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev. 112, 673 (2012).
    [9] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Chem. Rev. 112, 1105 (2012).
    [10] K. Z. Yang, L. Q. Zhou, X. Xiong, M. L. Ye, L. Li, and Q. H. Xia, Microporous Mesoporous Mater. 225, 1 (2016).
    [11] A. K. Adhikari, K. S. Lin, and M. T. Tu, J. Taiwan Inst. Chem. E 63, 463 (2016).
    [12] S. Ma and H. C. Zhou, Chem. Commun. 46, 44 (2010).
    [13] N. Cao, T. Liu, J. Su, X. J. Wu, W. Luo, and G. Z. Cheng, New J. Chem. 38, 4032 (2014).
    [14] A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Ronnebro, T. Autrey, H. Shioyama, and Q. Xu, J. Am. Chem. Soc. 134, 13926 (2012).
    [15] T. Truong, G. H. Dang, N. V. Tran, N. T. Truong, D. T. Le, and N. T. S. Phan, J. Mol. Catal. A: Chem. 409, 110 (2015).
    [16] L. Chen, H. Li, W. Zhan, Z. Cao, J. Chen, Q. Jiang, Y. Jiang, Z. Xie, Q. Kuang, and L. Zheng, ACS Appl. Mater. Interfaces 8, 31059 (2016).
    [17] J. Li, Q. L. Zhu, and Q. Xu, Catal. Sci. Technol. 5, 525 (2015).
    [18] M. Wen, Y. Kuwahara, K. Mori, D. Zhang, H. Li, and H. Yamashita, J. Mater. Chem. A 3, 14134 (2015).
    [19] P. Z. Li, K. Aranishi, and Q. Xu, Chem. Commun. 48, 3173 (2012).
    [20] T. Umegaki, S. M. Hui, and Y. Kojima, New J. Chem. 41, 992 (2017).
    [21] W. Grochala and P. P. Edwards, Chem. Rev. 104, 1283 (2004).
    [22] G. Y. Fan, X. J. Li, Y. L. Ma, Y. Zhang, J. T. Wu, B. Xu, T. Sun, D. J. Gao, and J. Bi, New J. Chem. 41, 2793 (2017).
    [23] Ö. Metin, H. Can, K. Dendil, and M. S. Gültekin, J. Colloid Interf. Sci. 498, 378 (2017).
    [24] Q. Yao, W. M. Shi, G. Feng, Z. H. Lu, X. L. Zhang, D. Tao, D. J. Kong, and X. S. Chen, J. Power Sources 257, 293 (2014).
    [25] Y. S. Du, N. Cao, L. Yang, W. Luo, and G. Z. Cheng, New J. Chem. 37, 3035 (2013).
    [26] G. Y. Fan, Q. Q. Liu, D. M. Tang, X. J. Li, J. Bi, and D. J. Gao, Int. J. Hydrogen Energy 41, 1542 (2016).
    [27] Q. S. Shao, R. C. Bai, Z. Y. Tang, Y. F. Gao, J. L. Sun, and M. S. Ren, Surf. Coat. Technol. 302, 185 (2016).
    [28] M. Rakap, J. Alloys Comp. 649, 1025 (2015).
    [29] N. Shang, X. Zhou, C. Feng, S. Gao, Q. Wu, and C. Wang, Int. J. Hydrogen Energy 42, 5733 (2017).
    [30] C. Volkringer, D. Popov, T. Loiseau, N. Guillou, G. Ferey, M. Haouas, F. Taulelle, C. Mellot-Draznieks, M. Burghammer, and C. Riekel, Nat. Mater. 6, 760 (2007).
    [31] M. Haouas, C. Volkringer, T. Loiseau, G. F erey, and F. Taulelle, Chem. Eur. J. 15, 3139 (2009).
    [32] N. A. Khan, J. S. Lee, J. Jeon, C. H. Jun, and S. H. Jhung, Microporous Mesoporous Mater. 152, 235 (2012).
    [33] S. S. Ding, Q. Yan, H. Jiang, Z. X. Zhong, R. Z. Chen, and W. H. Xing, Chem. Eng. J. 296, 146 (2016).
    [34] N. Z. Shang, C. Feng, S. T. Gao, and C. Wang, Int. J. Hydrogen Energy 41, 944 (2016).
    [35] J. D. Cai, Y. Y. Huang, and Y. L. Guo, Appl. Catal. B: Environ. 150, 230 (2014).
    [36] D. Liang, J. Gao, J. H. Wang, P. Chen, Y. F. Wei, and Z. Y. Hou, Catal. Commun. 12, 1059 (2011).
    [37] N. Cao, K. Hu, W. Luo, and G. Z. Cheng, J. Alloys Compd. 590, 241 (2014).
    [38] X. Xiong, L. Q. Zhou, G. F. Yu, K. Z. Yang, M. L. Ye, and Q. H. Xia, Int. J. Hydrogen Energy 40, 15521 (2015).
    [39] F. Y. Qiu, L. Li, G. Liu, Y. J. Wang, Y. P. Wang, C. F. An, Y. N. Xu, C. C. Xu, Y. Wang, L. F. Jiao, and H. T. Yuan, Int. J. Hydrogen Energy 38, 3241 (2013).
    [40] L. Yang, J. Su, X. Y. Meng, W. Luo, and G. Z. Cheng, J. Mater. Chem. A 1, 10016 (2013).
    [41] L. Zhang, L. Q. Zhou, K. Z. Yang, D. D. Gao, C. Huang, Y. F. Chen, F. Zhang, X. Xiong, L. Li, and Q. H. Xia, J. Alloys Compd. 677, 87 (2016).
    [42] N. Cao, J. Su, W. Luo, and G. Z. Cheng, Int. J. Hydrogen Energy 39, 426 (2014).
    [43] N. Cao, J. Su, W. Luo, and G. Z. Cheng, Catal. Commun. 43, 47 (2014).
    [44] Q. Yao, Z. H. Lu, Y. Q. Wang, X. S. Chen, and G. Feng, J. Phys. Chem. C 119, 14167 (2015).
    [45] M. N. Timofeeva, V. N. Panchenko, A. A. Abel, N. A. Khan, I. Ahmed, A. B. Ayupov, K. P. Volcho, and S. H. Jhung, J. Catal. 311, 114 (2014).
    [46] D. D. Ke, Y. Li, J. Wang, L. Zhang, J. D. Wang, X. Zhao, S. Q. Yang, and S. M. Han, Int. J. Hydrogen Energy 41, 2564 (2016).
    [47] L. Wen, J. Su, X. J. Wu, P. Cai, W. Luo, and G. Z. Cheng, Int. J. Hydrogen Energy 39, 17129 (2014).
    [48] Y. Y. Huang, J. D. Cai, and Y. L. Guo, Appl. Catal. B: Environ. 129, 549 (2013).
    [49] Y. Li, Y. Dai, and X. K. Tian, Int. J. Hydrogen Energy 40, 9235 (2015).
    [50] X. J. Li, C. M. Zeng, and G. Y. Fan, Int. J. Hydrogen Energy 40, 9217 (2015).
    [51] K. Mori, K. Miyawaki, and H. Yamashita, ACS Catal. 6, 3128 (2016).
    [52] X. J. Li, C. M. Zeng, and G. Y. Fan, Int. J. Hydrogen Energy 40, 3883 (2015).
    [53] C. Du, Q. Ao, N. Cao, L. Yang, W. Luo, and G. Z. Cheng, Int. J. Hydrogen Energy 40, 6180 (2015).
    [54] Y. R. Fan, X. J. Li, X. C. He, C. M. Zeng, G. Y. Fan, Q. Q. Liu, and D. M. Tang, Int. J. Hydrogen Energy 39, 19982 (2014).
    [55] L. Wen, Z. Zheng, W. Luo, P. Cai, and G. Z. Cheng, Chin. Chem. Lett. 26, 1345 (2015).
    [56] K. Z. Yang, L. Q. Zhou, G. F. Yu, X. Xiong, M. L. Ye, Y. Li, D. Lu, Y. X. Pan, M. H. Chen, L. Zhang, D. D. Gao, Z. Wang, H. Y. Liu, and Q. H. Xia, Int. J. Hydrogen Energy 41, 6300 (2016).
    [57] S. Akbayrak, M. Kaya, M. Volkan, and S.Özkar, J. Mol. Catal. A: Chem. 394, 253 (2014).
    [58] N. Cao, W. Luo, and G. Z. Cheng, Int. J. Hydrogen Energy 38, 11964 (2013).
    [59] G. P. Rachiero, U. B. Demirci, and P. Miele, Int. J. Hydrogen Energy 36, 7051 (2011).
    [60] Q. L. Yao, Z. H. Lu, W. Huang, X. S. Chen, and J. Zhu, J. Mater. Chem. A 4, 8579 (2016).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1185) PDF downloads(600) Cited by()

Proportional views
Related

Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane

doi: 10.1063/1674-0068/31/cjcp1707137

Abstract: By adjusting various Ru/M (M=Co, Ni) molar ratios, a series of highly dispersed bimetallic RuM alloy nanoparticles (NPs) anchored on MIL-110(Al) have been successfully prepared via a conventional impregnation-reduction method. And they are first used as heterogeneous catalysts for the dehydrogenation reaction of AB at room temperature. The results reveal that the as-prepared Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 exhibit the highest catalytic activities in different RuCo and RuNi molar ratios, respectively. It is worthy of note that the turnover frequency (TOF) values of Ru1Co1@MIL-110 and Ru1Ni1@MIL-110 catalysts reached 488.1 and 417.1 mol H2 min-1 (mol Ru)-1 and the activation energies (Ea) are 31.7 and 36.0 kJ/mol, respectively. The superior catalytic performance is attributed to the bimetallic synergistic action between Ru and M, uniform distribution of metal NPs as well as bi-functional effect between RuM alloy NPs and MIL-110. Moreover, these catalysts exhibit favorable stability after 5 consecutive cycles for the hydrolysis of AB.

Hong-hui Ning, Di Lu, Li-qun Zhou, Meng-huan Chen, Yue Li, Gao-jian Zhou, Wei-wei Peng, Zheng Wang. Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 99-110. doi: 10.1063/1674-0068/31/cjcp1707137
Citation: Hong-hui Ning, Di Lu, Li-qun Zhou, Meng-huan Chen, Yue Li, Gao-jian Zhou, Wei-wei Peng, Zheng Wang. Bimetallic RuM (M=Co, Ni) Alloy NPs Supported on MIL-110(Al): Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 99-110. doi: 10.1063/1674-0068/31/cjcp1707137
Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return