Ting Huang, Zhi-hu Sun, Guo-qiang Pan. Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 66-70. doi: 10.1063/1674-0068/31/cjcp1707134
Citation: Ting Huang, Zhi-hu Sun, Guo-qiang Pan. Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 66-70. doi: 10.1063/1674-0068/31/cjcp1707134

Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters

doi: 10.1063/1674-0068/31/cjcp1707134
  • Received Date: 2017-07-04
  • Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their performance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clusters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as-synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer number per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.
  • 加载中
  • [1] Y. H. Bing, H. S. Liu, L. Zhang, D. Ghosh, and J. J. Zhang, Chem. Soc. Rev. 39, 2184 (2010).
    [2] J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, and J. K. N rskov, Nat. Chem. 1, 552 (2009).
    [3] B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu, and Y. N. Xia, Science 324, 1302 (2009).
    [4] N. M. Marković, H. A. Gasteiger, B. N. Grgur, and P. N. Ross, J. Electroanal. Chem. 467, 157 (1999).
    [5] N. M. Marković, T. J. Schmidt, V. Stamenkovi c, and P. N. Ross, Fuel Cells 1, 105 (2001).
    [6] U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, and R. J. Behm, J. Electroanal. Chem. 495, 134 (2001).
    [7] U. A. Paulus, A.Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, and P. N. Ross, J. Phys. Chem. B 106, 4181 (2002).
    [8] Z. M. Peng and H. Yang, J. Am. Chem. Soc. 131, 7542 (2009).
    [9] T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, and R. J. Behm, J. Electroanal. Chem. 508, 41 (2001).
    [10] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas, and N. M. Marković, Science 315, 493 (2007).
    [11] C. Wang, H. Daimon, and S. H. Sun, Nano Lett. 9, 1493 (2009).
    [12] J. Zhang, K. Sasaki, E. Sutter, and R. R. Adzic, Science 315, 220 (2007).
    [13] J. L. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis, and R. R. Adzic, J. Am. Chem. Soc. 127, 12480 (2005).
    [14] W. Tang, H. F. Lin, A. Kleiman-Shwarsctein, G. D. Stucky, and E. W. McFarland, J. Phys. Chem. C 112, 10515 (2008).
    [15] Y. Z. Lu and W. Chen, J. Power Sources 197, 107 (2012).
    [16] W. T. Wei and W. Chen, Int. J. Smart Nano Mater. 4, 62 (2013).
    [17] J. A. van Bokhoven and J. T. Miller, J. Phys. Chem. C 111, 9245 (2007).
    [18] W. Chen and S. W. Chen, Angew. Chem. Int. Ed. 48, 4386 (2009).
    [19] C. Kowala and J. M. Swan, Aust. J. Chem. 19, 999 (1966).
    [20] A. Corma, P. Concepción, M. Boronat, M. J. Sabater, J. Navas, M. J. Yacaman, E. Larios, A. Posadas, M. A. L opez-Quintela, D. Buceta, E. Mendoza, G. Guilera, and A. Mayoral, Nat. Chem. 5, 775 (2013).
    [21] K. Sutthiumporn and S. Kawi, Int. J. Hydrogen Energy 36, 14435 (2011).
    [22] S. Trasatti and O. A. Petrii, Pure Appl. Chem. 63, 711 (1991).
    [23] W. Chen, J. Kim, S. H. Sun, and S. W. Chen, J. Phys. Chem. C 112, 3891 (2008).
    [24] R. E. Davis, G. L. Horvath, and C. W. Tobias, Electrochim. Acta 12, 287 (1967).
    [25] A. Sarapuu, M. Nurmik, H. Mändar, A. Rosental, T. Laaksonen, K. Kontturi, D. J. Schi rin, and K. Tammeveski, J. Electroanal. Chem. 612, 78 (2008).
    [26] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, and L. M. Dai, Science 323, 760 (2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(692) PDF downloads(466) Cited by()

Proportional views
Related

Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters

doi: 10.1063/1674-0068/31/cjcp1707134

Abstract: Ultrasmall gold nanoclusters consisting of 2-4 Au atoms were synthesized and their performance in electrocatalytic oxygen reduction reactions (ORR) was examined. These clusters were synthesized by exposing AuPPh3Cl to the aqueous ammonia medium for one week. Electrospray ionization mass spectrometry (ESI-MS), X-ray absorption fine structure (XAFS), and X-ray photoelectron spectroscopy (XPS) analyses indicate that the as-synthesized gold clusters (abbreviated as Aux) consist of 2-4 Au atoms coordinated by the triphenylphosphine, hydroxyl, and adsorbed oxygen ligands. A glassy carbon disk electrode loaded with the Aux clusters (Aux/GC) was characterized by the cyclic and linear-sweep voltammetry for ORR. The cyclic voltammogram vs. RHE shows the onset potential of 0.87 V, and the kinetic parameters of JK at 0.47 V and the electron-transfer number per oxygen molecule were calculated to be 14.28 mA/cm2 and 3.96 via the Koutecky-Levich equations, respectively.

Ting Huang, Zhi-hu Sun, Guo-qiang Pan. Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 66-70. doi: 10.1063/1674-0068/31/cjcp1707134
Citation: Ting Huang, Zhi-hu Sun, Guo-qiang Pan. Oxygen Electroreduction Performance of Ultrasmall Gold Nanoclusters[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 66-70. doi: 10.1063/1674-0068/31/cjcp1707134
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return