Rui-xue Xu, Yang Liu, Hou-dao Zhang, YiJing Yan. Theory of Quantum Dissipation in a Class of Non-Gaussian Environments[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 395-403. doi: 10.1063/1674-0068/30/cjcp1706123
Citation: Rui-xue Xu, Yang Liu, Hou-dao Zhang, YiJing Yan. Theory of Quantum Dissipation in a Class of Non-Gaussian Environments[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 395-403. doi: 10.1063/1674-0068/30/cjcp1706123

Theory of Quantum Dissipation in a Class of Non-Gaussian Environments

doi: 10.1063/1674-0068/30/cjcp1706123
  • Received Date: 2017-06-17
  • Rev Recd Date: 2017-06-27
  • In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic bath coupling environment, based on an extended algebraic statistical quasi-particle approach. To validate the new ingredient of the underlying dissipaton algebra, we derive an extended Zusman equation via a totally different approach. We prove that the new theory, if it starts with the identical setup, constitutes the dynamical resolutions to the extended Zusman equation. Thus, we verify the generalized (non-Gaussian) Wick's theorem with dissipatons-pair added. This new algebraic ingredient enables the dissipaton approach being naturally extended to nonlinear coupling environments. Moreover, it is noticed that, unlike the linear bath coupling case, the influence of a non-Gaussian environment cannot be completely characterized with the linear response theory. The new theory has to take this fact into account. The developed DEOM theory manifests the dynamical interplay between dissipatons and nonlinear bath coupling descriptors that will be specified. Numerical demonstrations will be given with the optical line shapes in quadratic coupling environment.
  • 加载中
  • [1] R. P. Feynman and F. L. Vernon Jr., Ann. Phys. 24, 118(1963).
    [2] Y. Tanimura, Phys. Rev. A 41, 6676(1990).
    [3] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001(2006).
    [4] R. X. Xu, P. Cui, X. Q. Li, Y. Mo, and Y. J. Yan, J. Chem. Phys. 122, 041103(2005).
    [5] Y. A. Yan, F. Yang, Y. Liu, and J. S. Shao, Chem. Phys. Lett. 395, 216(2004).
    [6] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703(2008).
    [7] U. Weiss, Quantum Dissipative Systems, 3rd Edn., Series in Modern Condensed Matter Physics, Vol. 13, Singapore: World Scientific, (2008).
    [8] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Edn., Singapore: World Scientific, (2009).
    [9] Y. J. Yan and R. X. Xu, Annu. Rev. Phys. Chem. 56, 187(2005).
    [10] Y. J. Yan, J. Chem. Phys. 140, 054105(2014).
    [11] Y. J. Yan, J. S. Jin, R. X. Xu, and X. Zheng, Frontiers Phys. 11, 110306(2016).
    [12] U. Fano, Phys. Rev. 124, 1866(1961).
    [13] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257(2010).
    [14] H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 024112(2015).
    [15] R. X. Xu, H. D. Zhang, X. Zheng, and Y. J. Yan, Sci. China Chem. 58, 1816(2015).
    [16] H. D. Zhang, Q. Qiao, R. X. Xu, and Y. J. Yan, Chem. Phys. 481, 237(2016).
    [17] H. D. Zhang, Q. Qiao, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 145, 204109(2016).
    [18] J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 234108(2015).
    [19] A. O. Caldeira and A. J. Leggett, Physica A 121, 587(1983).
    [20] A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 4491(1985).
    [21] M. Thoss, H. B. Wang, and W. H. Miller, J. Chem. Phys. 115, 2991(2001).
    [22] H. Risken, The Fokker-Planck Equation, Methods of Solution and Applications, 2nd Edn., Berlin: SpringerVerlag, (1989).
    [23] H. D. Zhang, J. Xu, R. X. Xu, and Y. J. Yan, "Modified Zusman equation for quantum solvation dynamics and rate processes," in Reaction Rate Constant Computations: Theories and Applications, edited by K. L. Han and T. S. Chu, Ch. 13, RSC Theoretical and Computational Chemistry Series No.6, London, (2014). http://dx.doi.org/10.1039/9781849737753-00319.
    [24] L. D. Zusman, Chem. Phys. 49, 295(1980).
    [25] L. D. Zusman, Chem. Phys. 80, 29(1983).
    [26] D. Y. Yang and R. I. Cukier, J. Chem. Phys. 91, 281(1989).
    [27] Y. J. Yan and S. Mukamel, J. Chem. Phys. 85, 5908(1986).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(887) PDF downloads(733) Cited by()

Proportional views
Related

Theory of Quantum Dissipation in a Class of Non-Gaussian Environments

doi: 10.1063/1674-0068/30/cjcp1706123

Abstract: In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic bath coupling environment, based on an extended algebraic statistical quasi-particle approach. To validate the new ingredient of the underlying dissipaton algebra, we derive an extended Zusman equation via a totally different approach. We prove that the new theory, if it starts with the identical setup, constitutes the dynamical resolutions to the extended Zusman equation. Thus, we verify the generalized (non-Gaussian) Wick's theorem with dissipatons-pair added. This new algebraic ingredient enables the dissipaton approach being naturally extended to nonlinear coupling environments. Moreover, it is noticed that, unlike the linear bath coupling case, the influence of a non-Gaussian environment cannot be completely characterized with the linear response theory. The new theory has to take this fact into account. The developed DEOM theory manifests the dynamical interplay between dissipatons and nonlinear bath coupling descriptors that will be specified. Numerical demonstrations will be given with the optical line shapes in quadratic coupling environment.

Rui-xue Xu, Yang Liu, Hou-dao Zhang, YiJing Yan. Theory of Quantum Dissipation in a Class of Non-Gaussian Environments[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 395-403. doi: 10.1063/1674-0068/30/cjcp1706123
Citation: Rui-xue Xu, Yang Liu, Hou-dao Zhang, YiJing Yan. Theory of Quantum Dissipation in a Class of Non-Gaussian Environments[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 395-403. doi: 10.1063/1674-0068/30/cjcp1706123
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return