Tie-jun Xiao, Yun Zhou. Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 61-65. doi: 10.1063/1674-0068/31/cjcp1705110
Citation: Tie-jun Xiao, Yun Zhou. Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 61-65. doi: 10.1063/1674-0068/31/cjcp1705110

Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions

doi: 10.1063/1674-0068/31/cjcp1705110
  • Received Date: 2017-05-27
  • In this work, we discussed the stochastic thermodynamics of mesoscopic electron transfer reactions between ions and electrodes. With a relationship between the reaction rate constant and the electrode potential, we find that the heat dissipation βq equals to the dynamic irreversibility of the reaction system minus an internal entropy change term. The total entropy change Δst is defined as the summation of the system entropy change Δs and the heat dissipation βq such that Δsts+βq. Even though the heat dissipation depends linearly on the electrode potential, the total entropy change is found to satisfy the fluctuation theorem <(e)st>=1, and hence a second law-like inequality reads <Δst>≥0. Our study provides a practical methodology for the stochastic thermodynamics of electrochemical reactions, which may find applications in biochemical and electrochemical reaction systems.
  • 加载中
  • [1] K. Sekimoto, Prog. Theoretical Theor. Supplement 130, 17 (1998).
    [2] F. Ritort, Adv. Chem. Phys. 137, 31 (2008).
    [3] U. Seifert, Eur. Phys. J. B 64, 423 (2008).
    [4] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
    [5] D. J. Evans, E. Cohen, and G. Morriss, Phys. Rev. Lett. 71, 2401 (1993).
    [6] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
    [7] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
    [8] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
    [9] D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645 (1994).
    [10] R. Van Zon and E. Cohen, Phys. Rev. Lett. 91, 110601 (2003).
    [11] S. R. Williams, D. J. Searles, and D. J. Evans, Phys. Rev. Lett. 100, 250601 (2008).
    [12] F. Douarche, S. Joubaud, N. B. Garnier, A. Petrosyan, and S. Ciliberto, Phys. Rev. Lett. 97, 140603 (2006).
    [13] K. H. Kim and H. Qian, Phys. Rev. E 75, 022102 (2007).
    [14] A. Gomez-Marin, T. Schmiedl, and U. Seifert, J. Chem. Phys. 129, 024114 (2008).
    [15] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Phys. Rev. Lett. 110, 040601 (2013).
    [16] A. Barato and U. Seifert, Phys. Rev. Lett. 112, 090601 (2014).
    [17] J. M. Horowitz and M. Esposito, Phys. Rev. E 94, 020102 (2016).
    [18] M. Esposito, M. A. Ochoa, and M. Galperin, Phys. Rev. Lett. 114, 080602 (2015).
    [19] M. Campisi, P. Häggi, and P. Talkner, Rev. Modern Phys. 83, 771 (2011).
    [20] J. M. Horowitz, J. Chem. Phys. 143, 044111 (2015).
    [21] P. Gaspard, J. Chem. Phys. 120, 8898 (2004).
    [22] T. Schmiedl and U. Seifert, J. Chem. Phys. 126, 044101 (2007).
    [23] P. Atkins and J. D. Paula, Atkins' Physical Chemistry, New York: Oxford University Press, (2006).
    [24] T. J. Xiao, Z. Hou, and H. Xin, J. Chem. Phys. 129, 114506 (2008).
    [25] T. Xiao, Z. Hou, and H. Xin, J. Phys. Chem. B 113, 9316 (2009).
    [26] T. Rao, T. Xiao, and Z. Hou, J. Chem. Phys. 134, 214112 (2011).
    [27] D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan, Phys. Rev. Lett. 98, 150601 (2007).
    [28] D. Andrieux and P. Gaspard, J. Chem. Phys. 128, 154506 (2008).
    [29] D. Andrieux and P. Gaspard, Phys. Rev. E 77, 031137 (2008).
    [30] J. W. Schultze and A. Bressel, Electrochim. Acta 47, 3 (2001).
    [31] C. Spegel, A. Heiskanen, L. H. D. Skjolding, and J. Emneus, Electroanalysis 20, 680 (2008).
    [32] R. Garcia, R. V. Martinez, and J. Martinez, Chem. Soc. Rev. 35, 29 (2006).
    [33] R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
    [34] R. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).
    [35] R. A. Marcus, J. Chem. Phys. 43, 679 (1965).
    [36] R. A. Marcus, Rev. Modern Phys. 65, 599 (1993).
    [37] D. T. Gillespie, J. Chem. Phys. 22, 403 (1976).
    [38] D. T. Gillespie, J. Chem. Phys. 81, 2340 (1977).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(831) PDF downloads(531) Cited by()

Proportional views
Related

Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions

doi: 10.1063/1674-0068/31/cjcp1705110

Abstract: In this work, we discussed the stochastic thermodynamics of mesoscopic electron transfer reactions between ions and electrodes. With a relationship between the reaction rate constant and the electrode potential, we find that the heat dissipation βq equals to the dynamic irreversibility of the reaction system minus an internal entropy change term. The total entropy change Δst is defined as the summation of the system entropy change Δs and the heat dissipation βq such that Δsts+βq. Even though the heat dissipation depends linearly on the electrode potential, the total entropy change is found to satisfy the fluctuation theorem <(e)st>=1, and hence a second law-like inequality reads <Δst>≥0. Our study provides a practical methodology for the stochastic thermodynamics of electrochemical reactions, which may find applications in biochemical and electrochemical reaction systems.

Tie-jun Xiao, Yun Zhou. Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 61-65. doi: 10.1063/1674-0068/31/cjcp1705110
Citation: Tie-jun Xiao, Yun Zhou. Stochastic Thermodynamics of Mesoscopic Electrochemical Reactions[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 61-65. doi: 10.1063/1674-0068/31/cjcp1705110
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return