Hao-qi Tangy, Yue Liny, Zheng-wang Chengy, Xue-feng Cui, Bing Wang. Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 71-76. doi: 10.1063/1674-0068/31/cjcp1705103
Citation: Hao-qi Tangy, Yue Liny, Zheng-wang Chengy, Xue-feng Cui, Bing Wang. Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 71-76. doi: 10.1063/1674-0068/31/cjcp1705103

Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film

doi: 10.1063/1674-0068/31/cjcp1705103
  • Received Date: 2017-05-22
  • Imaging the doping elements is critical for understanding the photocatalytic activity of doped TiO2 thin film. But it is still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark-field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A-TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.
  • 加载中
  • [1] A. Fujishima, and K. Honda, Nature 238, 37 (1972).
    [2] J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide, Boca Raton, FL: CRC Press, (2011).
    [3] U. Diebold, Surf. Sci. Rep. 48, 53 (2003).
    [4] A. Fujishima, X. Zhang, and D. Tryk, Surf. Sci. Rep. 63, 515 (2008).
    [5] M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011).
    [6] K. Rajeshwar, J. Appl. Electrochem. 37, 765 (2007).
    [7] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy 27, 991 (2002).
    [8] Q. Q. Hao, Z. Q. Wang, X. C. Mao, C. Y. Zhou, D. X. Dai, and X. M. Yang, Chin. J. Chem. Phys. 29, 105 (2016).
    [9] W. G. Zhu, X. F. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, H. M. Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. H. Gu, G. Eres, and Z. Y. Zhang, Phys. Rev. Lett. 103, 226401 (2009).
    [10] P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).
    [11] T. C. Wang, N. Lu, J. Li, and Y. Wu, Environ. Sci. Technol. 45, 9301 (2011).
    [12] S. J. Tan and B. Wang, Chin. J. Chem. Phys. 28, 383 (2015).
    [13] Z. H. Geng, X. Chen, Q. Guo, D. X. Dai, and X. M. Yang, Chin. J. Chem. Phys. 30, 1 (2017).
    [14] T. Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, and N. Shibata, Nano Lett. 14, 134 (2014).
    [15] N. Shibata, A. Goto, S. Y. Choi, T. Mizoguchi, S. D. Findlay, T. Yamamoto, and Y. Ikuhara, Science 322, 570 (2008).
    [16] F. D. Pieve, S. D. Matteo, T. Rangel, M. Giantomassi, D. Lamoen, G. M. Rignanese, and X. Gonze, Phys. Rev. Lett. 110, 136402 (2013).
    [17] X. Li, Z. Guo, and T. He, Phys. Chem. Chem. Phys. 15, 20037 (2013).
    [18] D. Dvoranov, V. Brezov, M. Mazr, and M. A. Malati, Appl. Catal. B-Environ. 37, 91 (2002).
    [19] J. Choi, H. Park, and M. R. Hoffmann, J. Phys. Chem. C 114, 783 (2010).
    [20] Y. X.Wang, H. Liu, Z. Q. Li, X. X. Zhang, R. K. Zheng, and S. P. Ringer, Appl. Phys. Lett. 89, 042511 (2006).
    [21] T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo, and H. Onishi, J. Phys. Chem. C 112, 1167 (2008).
    [22] Y. Wang, Z. Cheng, S. J. Tan, X. Shao, B. Wang, and J. G. Hou, Surf. Sci. 616, 93 (2013).
    [23] Y. Wang, X. Shao, and B. Wang, Acta Phys. Chim. Sin. 29, 1363 (2013).
    [24] Y. H. Peng, G. F. Huang, and W. Q. Huang, Adv. Powder Technol. 23, 8 (2012).
    [25] B. Tian, C. Li, and J. Zhang, Chem. Eng. J. 191, 402 (2012).
    [26] M. E. Kurtoglu, T. Longenbach, K. Sohlberg, and Y. Gogotsi, J. Phys. Chem. C 115, 17392 (2011).
    [27] M. Chiodi, C. P. Cheney, P. Vilmercati, E. Cavaliere, N. Mannella, H. H. Weitering, and L. Gavioli, J. Phys. Chem. C 116, 311 (2012).
    [28] C. P. Cheney, P. Vilmercati, E. W. Martin, M. Chiodi, L. Gavioli, M. Regmi, G. Eres, T. A. Callcott, H. H. Weitering, and N. Mannella1, Phys. Rev. Lett. 112, 036404 (2014).
    [29] A. Sasahar and M. Tomitori, J. Phys. Chem. C 117, 17680 (2013).
    [30] D. Morris, Y. Dou, J. Rebane, C. E. Mitchell, R. G. Egdell, D. S. Law, A. Vittadini, and M. Casarin, Phys. Rev. B 61, 13445 (2000).
    [31] M. Batzill, E. H. Morales, and U. Diebold, Phys. Rev. Lett. 96, 026103 (2006).
    [32] J. Cao, Y. Zhang, L. Liu, and J. Ye, Chem. Commun. 49, 3440 (2013).
    [33] T. C. Kaspar, S. M. Heald, C. M. Wang, J. D. Bryan, T. Droubay, V. Shutthanandan, S. Thevuthasan, D. E. McCready, A. J. Kellock, D. R. Gamelin, and S. A. Chambers, Phys. Rev. Lett. 95, 217203 (2005).
    [34] T. C. Kaspar, T. Droubay, V. Shutthanandan, S. M. Heald, C. M. Wang, D. E. McCready, S. Thevuthasan, J. D. Bryan, D. R. Gamelin, A. J. Kellock, M. F. Toney, X. Hong, C. H. Ahn, and S. A. Chambers, Phys. Rev. B 73, 155327 (2006).
    [35] K. Yang, Y. Dai, and B. Huang, ChemPhysChem 10, 2327 (2009).
    [36] N. Serpone, J. Phys. Chem. B 110, 24287 (2006).
    [37] Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, Chem. Phys. 339, 20 (2007).
    [38] W. Choi, A. Termin, and M. R. Ho mann, J. Phys. Chem. C 98, 13669 (1994).
    [39] N. Shibata, A. Goto, K. Matsunaga, T. Mizoguchi, S. D. Findlay, T. Yamamoto, and Y. Ikuhara, Phys. Rev. Lett. 102, 136105 (2009).
    [40] J. C. Bravman and R. Sinclair, J. Electron Microsc. 1, 53 (1984).
    [41] H. Q. Tang, Z. W. Cheng, S. H. Dong, X. F. Cui, H. Feng, X. C. Ma, B. Luo, A. D. Zhao, J. Zhao, and B. Wang, J. Phys. Chem. C 121, 1272 (2017).
    [42] D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, New York: Springer, (2009).
    [43] U. Kaiser, D. A. Muller, J. L. Grazul, A. Chuvilin, and M. Kawasaki, Nat. Mater. 1, 102 (2002).
    [44] K. Krupski, A. M. Sanchez, A. Krupski, and C. F. Mc- Conville, Appl. Surf. Sci. 388, Part B 684 (2016).
    [45] S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara, Appl. Phys. Lett. 95, 191913 (2009).
    [46] E. Okunishi, H. Sawada, and Y. Kondo, Micron 43, 538 (2012).
    [47] S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara, Ultramicroscopy 110, 903 (2010).
    [48] R. D. Leapman, L. A. Grunes, and P. L. Fejes, Phys. Rev. B 26, 614 (1982).
    [49] A. Thomas, W. R. Flavell, A. K. Mallick, A. R. Ku- marasinghe, D. Tsoutsou, N. Khan, C. Chatwin, S. Rayner, and G. C. Smith, Phys. Rev. B 75, 035105 (2007).
    [50] W. G. Waddington, P. Rez, I. P. Grant, and C. J. Humphreys, Phys. Rev. B 34, 1467 (1986).
    [51] M. Okada, P. Jin, Y. Yamada, M. Tazawa, and K. Yoshimura, Surf. Sci. 566, 1030 (2004).
    [52] D. W. Fischer, J. Appl. Phys. 41, 3561 (1970).
    [53] R. Brydson, H. Sauer, W. Engel, J. M. Thomass, E. Zeitler, N. Kosugi, and H. Kuroda, J. Phys.: Condens. Matter 1, 797 (1989).
    [54] C. J. Howard, T. M. Sabine, and F. Dickson, Acta Crys- tallogr., Sect. B 47, 462 (1991).
    [55] J. P. Crocombette and F. Jollet, J. Phys.: Condens. Matter 6, 10811 (1994).
    [56] D. W. Fischer and W. L. Baun, J. Appl. Phys. 39, 4757 (1968).
    [57] T. G. Sparrow, B. G. Williams, C. N. R. Rao, and J. M. Thomas, Chem. Phys. Lett. 108, 547 (1984).
    [58] T. L. Daulton and B. J. Little, Ultramicroscopy 106, 561 (2006).
    [59] T. L. Daulton, B. J. Little, K. Lowe, and J. Jones- Meehan, J. Microbiol. Methods 50, 39 (2002).
    [60] R. Brydson, B. G. Williams, W. Engel, H. Sauer, E. Zeitler, and J. M. Thomas, Solid State Commun. 64, 609 (1987).
    [61] C. X. Kronawitter, J. R. Bakke, D. A. Wheeler, W. C. Wang, C. L. Chang, B. R. Antoun, J. Z. Zhang, J. H. Guo, S. F. Bent, S. S. Mao, and L. Vayssieres, Nano Lett. 11, 3855 (2011).
    [62] F. M. Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B 40, 5715 (1989).
    [63] C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zand- bergen, B. Freitag, P. Tiemeijer, and F. Hofer, Ultra- microscopy 96, 469 (2003).
    [64] R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 3rd Edition, New York: Springer, (2011).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(768) PDF downloads(609) Cited by()

Proportional views
Related

Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film

doi: 10.1063/1674-0068/31/cjcp1705103

Abstract: Imaging the doping elements is critical for understanding the photocatalytic activity of doped TiO2 thin film. But it is still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark-field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A-TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.

Hao-qi Tangy, Yue Liny, Zheng-wang Chengy, Xue-feng Cui, Bing Wang. Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 71-76. doi: 10.1063/1674-0068/31/cjcp1705103
Citation: Hao-qi Tangy, Yue Liny, Zheng-wang Chengy, Xue-feng Cui, Bing Wang. Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film[J]. Chinese Journal of Chemical Physics , 2018, 31(1): 71-76. doi: 10.1063/1674-0068/31/cjcp1705103
Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return