Jian Chen, Hao Wu, An-wen Liu, Shui-ming Hu, Jingsong Zhang. Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 493-498. doi: 10.1063/1674-0068/30/cjcp1705084
Citation: Jian Chen, Hao Wu, An-wen Liu, Shui-ming Hu, Jingsong Zhang. Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 493-498. doi: 10.1063/1674-0068/30/cjcp1705084

Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer

doi: 10.1063/1674-0068/30/cjcp1705084
  • Received Date: 2017-05-02
  • A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.
  • 加载中
  • [1] P. J. Crutzen, Annu. Rev. Earth Planet. Sci. 7, 443 (1979).
    [2] B. J. Finlayson-Pitts and J. N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, San Diego: Academic Press, (2000).
    [3] R. Atkinson, Atmos. Environ. 34, 2063 (2000).
    [4] J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edn., New York: John Wiley & Sons, Inc., (2012).
    [5] People's Republic of China Ministry of Environmental Protection Standard, Technical Regulation on Ambient Air, Beijing: People's Republic of China Ministry of Environmental Protection, (2012).
    [6] K. L. Demerjian, Atmos. Environ. 34, 1861 (2000).
    [7] A. Fontijn, A. J. Sabadell, and R. J. Ronco, Anal. Chem. 42, 575 (1970).
    [8] B. A. Ridley and L. C. Howlett, Rev. Sci. Instrum. 45, 742 (1974).
    [9] F. C. Fehsenfeld, R. R. Dickerson, G. Hbler, W. T. Luke, L. J. Nunnermacker, E. J. Williams, J. M. Roberts, J. G. Calvert, C. M. Curran, A. C. Delany, C. S. Eubank, D. W. Fahey, A. Fried, B. W. Gandrud, A. O. Langford, P. C. Murphy, R. B. Norton, K. E. Pickering, and B. A. Ridley, J. Geophys. Res. Atmos. 92, 14710 (1987).
    [10] E. J. Williams, K. Baumann, J. M. Roberts, S. B. Bertman, R. B. Norton, F. C. Fehsenfeld, S. R. Springston, L. J. Nunnermacker, L. Newman, K. Olszyna, J. Meagher, B. Hartsell, E. Edgerton, J. R. Pearson, and M. O. Rodgers, J. Geophys. Res. Atmos. 103, 22261 (1998).
    [11] D. A. Day, P. J. Wooldridge, M. B. Dillon, J. A. Thornton, and R. C. Cohen, J. Geophys. Res. Atmos. 107, ACH 4-1 (2002).
    [12] I. M. Pérez, P. J. Wooldridge, and R. C. Cohen, Atmos. Environ. 41, 3993 (2007).
    [13] P. J. Wooldridge, A. E. Perring, T. H. Bertram, F. M. Flocke, J. M. Roberts, H. B. Singh, L. G. Huey, J. A. Thornton, G. M. Wolfe, J. G. Murphy, J. L. Fry, A. W. Rollins, B. W. LaFranchi, and R. C. Cohen, Atmos. Meas. Tech. 3, 593 (2010).
    [14] R. J. Wild, P. M. Edwards, W. P. Dub, K. Baumann, E. S. Edgerton, P. K. Quinn, J. M. Roberts, A. W. Rollins, P. R. Veres, C. Warneke, E. J. Williams, B. Yuan, S. S. Brown, Environ. Sci. Technol. 48, 9609 (2014).
    [15] M. Steinbacher, C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A. S. H. Prevot, and C. Hueglin, J. Geophys. Res. Atmos. 112, D11307 (2007).
    [16] W. Cao, L. M. Zeng, Y. S. Wu, and X. N. Yu, Acta Sci. Circumst. 35, 670 (2015).
    [17] J. A. Thornton, P. J. Wooldridge, and R. C. Cohen, Anal. Chem. 72, 528 (2000).
    [18] J. A. Thornton, P. J. Wooldridge, R. C. Cohen, E. J. Williams, D. Hereid, F. C. Fehsenfeld, J. Stutz, and B. Alicke, J. Geophys. Res. Atmos. 108, 4496 (2003).
    [19] P. A. Cleary, P. J. Wooldridge, and R. C. Cohen, Appl. Opt. 41, 6950 (2002).
    [20] H. Suzuki, Y. Miyao, T. Nakayama, J. K. Pearce, Y. Matsumi, K. Takahashi, K. Kita, and K. Tonokura, Atmos. Environ. 45, 6233 (2011).
    [21] U. Platt, D. Perner, and H. W. Patz, J. Geophys. Res. Oceans 84, 6329 (1979).
    [22] E. J. Dunlea, S. C. Herndon, D. D. Nelson, R. M. Volkamer, F. San Martini, P. M. Sheehy, M. S. Zahniser, J. H. Shorter, J. C. Wormhoudt, B. K. Lamb, E. J. Allwine, J. S. Ga ney, N. A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C. R. RamosVillegas, C. E. Kolb, L. T. Molina, and M. J. Molina, Atmos. Chem. Phys. 7, 2691 (2007).
    [23] G. Villena, I. Bejan, R. Kurtenbach, P. Wiesen, and J. Kle mann, Atmos. Meas. Tech. 5, 149 (2012).
    [24] Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, J. Geophys. Res. Atmos. 109, D16S08 (2004).
    [25] H. D. Osthoff, S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, and A. R. Ravishankara, J. Geophys. Res. Atmos. 111, D12305 (2006).
    [26] P. Castellanos, W. T. Luke, P. Kelley, J. W. Stehr, S. H. Ehrman, and R. R. Dickerson, Rev. Sci. Instrum. 80, 113107 (2009).
    [27] R. Wada and A. J. Orr-Ewing, Analyst 130, 1595 (2005).
    [28] H. Fuchs, W. P. Dube, B. M. Lerner, N. L. Wagner, E. J. Williams, and S. S. Brown, Environ. Sci. Technol. 43, 7831 (2009).
    [29] P. L. Kebabian, S. C. Herndon, and A. Freedman, Anal. Chem. 77, 724 (2005).
    [30] P. L. Kebabian, E. C. Wood, S. C. Herndon, and A. Freedman, Environ. Sci. Technol. 42, 6040 (2008).
    [31] B. Z. Ge, Y. L. Sun, Y. Liu, H. B. Dong, D. S. Ji, Q. Jiang, J. Li, and Z. F. Wang, J. Geophys. Res. Atmos. 118, 9499 (2013).
    [32] B. Z. Ge, Z. F. Wang, Y. L. Sun, H. B. Dong, D. S. Ji, Y. Liu, and Q. Jiang, Environ. Chem. 33, 1558 (2014).
    [33] K. Liu, R. Lewicki, and F. K. Tittel, Sensors Actuat. B 237, 887 (2016).
    [34] R. Lewicki, K. Liu, T. Day, and F. K. Tittel, Sub- ppb Detection of Nitrogen Dioxide with an External Cavity Quantum Cascade Laser, Proceedings of SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 82682H, San Francisco, California, USA: SPIE (2012).
    [35] A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [36] S. S. Brown, H. Stark, S. J. Ciciora, and A. R. Ravishankara, Geophys. Res. Lett. 28, 3227 (2001).
    [37] S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, Rev. Sci. Instrum. 73, 3291 (2002).
    [38] S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, J. Geophys. Res. Atmos. 108, 4299 (2003).
    [39] R. A. Washenfelder, N. L. Wagner, W. P. Dube, and S. S. Brown, Environ. Sci. Technol. 45, 2938 (2011).
    [40] D. Paul and H. D. Osthoff, Anal. Chem. 82, 6695 (2010).
    [41] D. Paul, A. Furgeson, and H. D. Osthoff, Rev. Sci. Instrum. 80, 114101 (2009).
    [42] N. Sobanski, J. Schuladen, G. Schuster, J. Lelieveld, and J. N. Crowley, Atmos. Meas. Tech. 9, 5103 (2016).
    [43] J. Thieser, G. Schuster, J. Schuladen, G. J. Phillips, A. Rei s, U. Parchatka, D. Pöhler, J. Lelieveld, and J. N. Crowley, Atmos. Meas. Tech. 9, 553 (2016).
    [44] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Mller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, J. Quantit. Spectrosc. Radiat. Transfer 130, 4 (2013).
    [45] R. R. Dickerson and D. H. Stedman, Environ. Sci. Technol. 14, 1261 (1980).
    [46] I. Trebs, B. Bohn, C. Ammann, U. Rummel, M. Blumthaler, R. Königstedt, F. X. Meixner, S. Fan, and M. O. Andreae, Atmos. Meas. Tech. 2, 725 (2009).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1022) PDF downloads(559) Cited by()

Proportional views
Related

Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer

doi: 10.1063/1674-0068/30/cjcp1705084

Abstract: A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.

Jian Chen, Hao Wu, An-wen Liu, Shui-ming Hu, Jingsong Zhang. Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 493-498. doi: 10.1063/1674-0068/30/cjcp1705084
Citation: Jian Chen, Hao Wu, An-wen Liu, Shui-ming Hu, Jingsong Zhang. Field Measurement of NO2 and RNO2 by Two-Channel Thermal Dissociation Cavity Ring Down Spectrometer[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 493-498. doi: 10.1063/1674-0068/30/cjcp1705084
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return