Yu-xi Wang, Ke Lin, Lin Chen, Xiao-guo Zhou, Shi-lin Liu. Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 365-371. doi: 10.1063/1674-0068/30/cjcp1704081
Citation: Yu-xi Wang, Ke Lin, Lin Chen, Xiao-guo Zhou, Shi-lin Liu. Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 365-371. doi: 10.1063/1674-0068/30/cjcp1704081

Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra

doi: 10.1063/1674-0068/30/cjcp1704081
  • Received Date: 2017-04-26
  • Rev Recd Date: 2017-05-31
  • Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic interactions during the self-assembly process of sodium dodecyl sulfate (SDS) in aqueous solutions. However, the Raman spectra in this region are seriously overlapped by the OH stretching band of water. In this work, vertically polarized Raman spectra were used to improve the detection sensitivity of spectra of C-H region for the first time. The spectral results showed that the first critical micelle concentration and the second critical micelle concentration of SDS in water were 8.5 and 69 mmol/L, respectively, which were consistent with the results given by surface tension measurements. Because of the high sensitivity of vertically polarized Raman spectra, the critical micelle concentration of SDS in a relatively high concentration of salt solution could be obtained in our experiment. The two critical concentrations of SDS in 100 mmol/L NaCl solution were recorded to be 1.8 and 16.5 mmol/L, respectively. Through comparing the spectra and surface tension of SDS in water and in NaCl solution, the self-assembly process in bulk phase and at interface were discussed. The interactions among salt ions, SDS and water molecules were also analyzed. These results demonstrated the vertically polarized Raman spectra could be employed to study the self-assembly process of SDS in water.
  • 加载中
  • [1] R. B. Viana, A. B. da Silva, and A. S. Pimentel, Adv. Phys. Chem. 2012, 1(2012).
    [2] G. Cazzolli, S. Caponi, A. Defant, C. Gambi, S. Marchetti, M. Mattarelli, M. Montagna, B. Rossi, F. Rossi, and G. Viliani, J. Raman Spectrosc. 43, 1877(2012).
    [3] L. Lanzi, M. Carlá, L. Lanzi, and C. M. Gambi, J. Colloid Interface Sci. 330, 156(2009).
    [4] S. May and A. Ben-Shaul, J. Phys. Chem. B 105, 630(2001).
    [5] T. Kawai, H. Kamio, and K. Kon-No, Langmuir 14, 4964(1998).
    [6] S. Ikeda, S. Hayashi, and T. Imae, J. Phys. Chem. 85, 106(1981).
    [7] X. Tang, P. H. Koenig, and R. G. Larson, J. Phys. Chem. B 118, 3864(2014).
    [8] M. Pal, R. Rai, A. Yadav, R. Khanna, G. A. Baker, and S. Pandey, Langmuir 30, 13191(2014).
    [9] M. J. Rosen and S. Aronson, Colloids Surf. 3, 201(1981).
    [10] P. Ekwall, L. Mandell, and P. Solyom, J. Colloid Interface Sci. 35, 519(1971).
    [11] B. Hammouda, J. Res. Natl. Inst. Stand. Technol 118, 151(2013).
    [12] Ö. Topel, B. A. Çakır, L. Budama, and N. Hoda, J. Mol. Liq. 177, 40(2013).
    [13] F. Reiss-Husson and V. Luzzati, J. Phys. Chem. 68, 3504(1964).
    [14] C. Thévenot, B. Grassl, G. Bastiat, and W. Binana, Colloids Surf. A 252, 105(2005).
    [15] C. M. Johnson and E. Tyrode, Phys. Chem. Chem. Phys. 7, 2635(2005).
    [16] T. Kawai, H. Kamio, T. Kondo, and K. Kon-No, J. Phys. Chem. B 109, 4497(2005).
    [17] A. Beyaz, W. S. Oh, and V. P. Reddy, Colloids Surf. B 35, 119(2004).
    [18] J. Newbery, Colloid Polym. Sci. 257, 773(1979).
    [19] Y. Shi, H. Q. Luo, and N. B. Li, Spectrochim. Acta, Part A 78, 1403(2011).
    [20] K. Chen, G. Cao, Z. Huang, F. Zhao, M. Liu, and Y. Chen, Tenside Surfact Det. 52, 280(2015).
    [21] L. M. Bergström, Curr. Opin. Colloid Interface Sci. 22, 46(2016).
    [22] J. S. Kim, C. K. Kim, P. S. Song, and K. M. Lee, J. Colloid Interface Sci. 80, 294(1981).
    [23] M. Picquart, J. Phys. Chem. 90, 243(1986).
    [24] Y. Q. Yu, Y. X. Wang, N. Y. Hu, K. Lin, X. G. Zhou, and S. L. Liu, J. Raman Spectrosc. 45, 259(2014).
    [25] Y. Q. Yu, Y. X. Wang, N. Y. Hu, K. Lin, X. G. Zhou, and S. L. Liu, Phys. Chem. Chem. Phys. 18, 10563(2016).
    [26] Y. Q. Yu, Y. X. Wang, K. Lin, X. G. Zhou, S. L. Liu, and J. Sun, J. Raman Spectrosc. 47, 1385(2016).
    [27] K. Lin, N. Y. Hu, X. G. Zhou, S. L. Liu, and Y. Luo, J. Raman Spectrosc. 43, 82(2012).
    [28] L. Chen, W. D. Zhu, K. Lin, N. Y. Hu, Y. Q. Yu, X. G. Zhou, L. F. Yuan, S. M. Hu, Y. Luo, and S. L. Liu, J. Phys. Chem. A 119, 3209(2015).
    [29] R. Sperline, Y. Song, and H. Freiser, Langmuir 13, 3727(1997).
    [30] A. Paschoal, A. Ayala, R. Pinto, C. Paschoal, and A. Tanaka, J. Boaventura Filho, and N. Jose, J. Raman Spectrosc. 42, 1601(2011).
    [31] K. Lin, X. G. Zhou, Y. Luo, and S. L. Liu, J. Phys. Chem. B 114, 3567(2010).
    [32] C. C. Wang, K. Lin, N. Y. Hu, X. G. Zhou, and S. L. Liu, Acta Phys. Chim. Sin. 28, 1823(2012).
    [33] C. Q. Tang, K. Lin, X. G. Zhou, and S. L. Liu, Chin. J. Chem. Phys. 29, 129(2016).
    [34] Y. X. Wang, W. D. Zhu, K. Lin, L. F. Yuan, X. G. Zhou, and S. L. Liu, J. Raman Spectrosc. 47, 1231(2016).
    [35] X. C. Yu, K. Lin, N. Y. Hu, X. G. Zhou, and S. L. Liu, Acta Phys. Chim. Sin 26, 2473(2010).
    [36] C. Q. Tang, K. Lin, X. G. Zhou, and S. L. Liu, Chin. J. Chem. Phys. 1, 129(2016).
    [37] K. Lin, X. G. Zhou, S. L. Liu, and Y. Luo, Chin. J. Chem. Phys. 25, 121(2013).
    [38] T. Kawai, J. Umemura, and T. Takenaka, Colloid Polym. Sci. 262, 61(1984).
    [39] J. H. Campbell, J. Fisher, and J. Jonas, J. Chem. Phys. 61, 346(1974).
    [40] M. Kodama, Y. Kubota, and M. Miura, Bull. Chem. Soc. Jpn. 45, 2953(1972).
    [41] T. Kawai, J. Umemura, and T. Takenaka, Colloid Polym. Sci. 262, 61(1984).
    [42] X. Y. Hua and M. J. Rosen, J. Colloid Interface Sci. 124, 652(1988).
    [43] S. Baoukina, L. Monticelli, H. J. Risselada, S. J. Marrink, and D. P. Tieleman, Proc. Natl. Acad. Sci. 105, 10803(2008).
    [44] O. R. Howell and H. Robinson, Proc. R. Soc. London, Ser. A 155, 386(1936).
    [45] K. A. Wright, A. D. Abbott, V. Sivertz, and H. Tartar, J. Am. Chem. Soc. 61, 549(1939).
    [46] N. A. Mazer, G. B. Benedek, and M. C. Carey, J. Phys. Chem 80, 1075(1976).
    [47] K. Maiti, D. Mitra, S. Guha, and S. P. Moulik, J. Mol. Liq. 146, 44(2009).
    [48] M. Ropers, G. Czichocki, and G. Brezesinski, J. Phys. Chem. B 107, 5281(2003).
    [49] F. Wei, H. C. Li, and S. J. Ye, J. Phys. Chem. C 117, 26190(2013).
    [50] F. Wei, S. J. Ye, H. C. Li, and Y. Luo, J. Phys. Chem. C 117, 11095(2013).
    [51] K. D. Danov, P. A. Kralchevsky, and K. P. Ananthapadmanabhan, Adv. Colloid Interface Sci. 206, 17(2014).
    [52] H. Lange, Kolloid Z. 121, 66(1951).
    [53] B. Naskar, A. Dey, and S. P. Moulik, J. Surfactants. Deterg. 16, 785(2013).
    [54] S. Hayashi and S. Ikeda, J. Phys. Chem. 84, 744(1980).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1093) PDF downloads(559) Cited by()

Proportional views
Related

Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra

doi: 10.1063/1674-0068/30/cjcp1704081

Abstract: Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic interactions during the self-assembly process of sodium dodecyl sulfate (SDS) in aqueous solutions. However, the Raman spectra in this region are seriously overlapped by the OH stretching band of water. In this work, vertically polarized Raman spectra were used to improve the detection sensitivity of spectra of C-H region for the first time. The spectral results showed that the first critical micelle concentration and the second critical micelle concentration of SDS in water were 8.5 and 69 mmol/L, respectively, which were consistent with the results given by surface tension measurements. Because of the high sensitivity of vertically polarized Raman spectra, the critical micelle concentration of SDS in a relatively high concentration of salt solution could be obtained in our experiment. The two critical concentrations of SDS in 100 mmol/L NaCl solution were recorded to be 1.8 and 16.5 mmol/L, respectively. Through comparing the spectra and surface tension of SDS in water and in NaCl solution, the self-assembly process in bulk phase and at interface were discussed. The interactions among salt ions, SDS and water molecules were also analyzed. These results demonstrated the vertically polarized Raman spectra could be employed to study the self-assembly process of SDS in water.

Yu-xi Wang, Ke Lin, Lin Chen, Xiao-guo Zhou, Shi-lin Liu. Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 365-371. doi: 10.1063/1674-0068/30/cjcp1704081
Citation: Yu-xi Wang, Ke Lin, Lin Chen, Xiao-guo Zhou, Shi-lin Liu. Intermolecular Interactions in Self-Assembly Process of Sodium Dodecyl Sulfate by Vertically Polarized Raman Spectra[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 365-371. doi: 10.1063/1674-0068/30/cjcp1704081
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return