Da Ke, Lai-zhi Sui, Dun-li Liu, Yu-su Wang, Su-yu Li, Yuan-fei Jiang, An-min Chen, Ming-xing Jin. Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 389-394. doi: 10.1063/1674-0068/30/cjcp1704070
Citation: Da Ke, Lai-zhi Sui, Dun-li Liu, Yu-su Wang, Su-yu Li, Yuan-fei Jiang, An-min Chen, Ming-xing Jin. Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 389-394. doi: 10.1063/1674-0068/30/cjcp1704070

Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy

doi: 10.1063/1674-0068/30/cjcp1704070
  • Received Date: 2017-04-13
  • Rev Recd Date: 2017-06-10
  • The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.
  • 加载中
  • [1] D. B. Lu, C. G. Luo, Y. L. Song, Q. N. Pan, and C. Y. Pu, Chin. J. Chem. Phys. 29, 205(2016).
    [2] J. H. Chen, X. Y. Feng, W. F. Chen, Y. Q. Song, and L. F. Yan, Chin. J. Chem. Phys. 30, 112(2017).
    [3] L. J. Liang, Q. Wang, T. Wu, J. W. Shen, and Y. Kang, Chin. J. Chem. Phys. 22, 627(2009).
    [4] L. S. Li and X. Yan, J. Phys. Chem. Lett. 1, 2572(2010).
    [5] A. J. Du and S. C. Smith, J. Phys. Chem. Lett. 2, 73(2011).
    [6] P. V. Kamat, J. Phys. Chem. Lett. 2, 242(2011).
    [7] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228(2009).
    [8] G. Eda and M. Chhowalla, Adv. Mater. 22, 2392(2010).
    [9] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577(2009).
    [10] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature 448, 457(2007).
    [11] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, Science 335, 442(2012).
    [12] X. Wang, L. J. Zhi, and K. Müllen, Nano Lett. 8, 323(2008).
    [13] C. M. Hill, Y. Zhu, and S. L. Pan, ACS Nano 5, 942(2011).
    [14] I. V. Lightcap and P. V. Kamat, J. Am. Chem. Soc. 134, 7109(2012).
    [15] G. Katsukis, J. Malig, C. Schulz-Drost, S. Leubner, N. Jux, and D. M. Guldi, ACS Nano 6, 1915(2012).
    [16] X. Y. Peng and F. Gong, E-J. Chem. 5, 802(2008).
    [17] P. Bradder, S. K. Ling, S. B. Wang, and S. M. Liu, J. Chem. Eng. Data 56, 138(2011).
    [18] G. K. Ramesha, A. V. Kumara, H. B. Muralidhara, and S. Sampath, J. Colloid Interface Sci. 361, 270(2011).
    [19] T. H. Liu, Y. H. Li, Q. J. Du, J. K. Sun, Y. Q. Jiao, G. M. Yang, Z. H. Wang, Y. Z. Xia, W. Zhang, K. L. Wang, H. W. Zhu, and D. H. Wu, Colloids Surf. BBiointerfaces 90, 197(2012).
    [20] H. Liu, J. Gao, M. Q. Xue, N. Zhu, M. N. Zhang, and T. B. Cao, Langmuir 25, 12006(2009).
    [21] D. Wang, Y. G. Li, P. Hasin, and Y. Y. Wu, Nano Res. 4, 124(2011).
    [22] D. D. Zhang, L. Fu, L. Liao, B. Y. Dai, R. Zou, and C. X. Zhang, Electrochim. Acta 75, 71(2012).
    [23] P. R. Ginimuge and S. D. Jyothi, J. Anaesthesiol. Clin. Pharmacol. 26, 517(2010).
    [24] R. H. Schirmer, B. Coulibaly, A. Stich, M. Scheiwein, H. Merkle, J. Eubel, K. Becker, H. Becher, O. Müller, T. Zich, W. Schiek, and B. Kouyaté, Redox Rep. 8, 272(2003).
    [25] J. P. Tardivo, A. Del Giglio, C. S. De Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. D. F. Turchiello, and M. S. Baptista, Photodiagn. Photodyn. Ther. 2, 175(2005).
    [26] J. Chen, T. C. Cesario, and P. M. Rentzepis, Chem. Phys. Lett. 498, 81(2010).
    [27] D. Chen, H. B. Feng, and J. H. Li, Chem. Rev. 112, 6027(2012).
    [28] A. Wojcik and P. V. Kamat, ACS Nano 4, 6697(2010).
    [29] G. R. Fleming, Chemical Application of Ultrafast Spectroscopy, New York: Oxford University Press, 1986.
    [30] L. Z. Sui, W. W. Jin, S. Y. Li, D. L. Liu, Y. F. Jiang, A. M. Chen, H. Liu, Y. Shi, D. J. Ding, and M. X. Jin, Phys. Chem. Chem. Phys. 18, 3838(2016).
    [31] C. Párkányi, C. Boniface, J. J. Aaron, and M. Maafi, Spectrochim. Acta Part A 49, 1715(1993).
    [32] K. Haubner, J. Murawski, P. Olk, L. M. Eng, C. Ziegler, B. Adolphi, and E. Jaehne, ChemPhysChem. 11, 2131(2010).
    [33] T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, Mater. Lett. 64, 399(2010).
    [34] Z. T. Luo, Y. Lu, L. A. Somers, and A. T. C. Johnson, J. Am. Chem. Soc. 131, 898(2009).
    [35] M. Wojtoniszak, D. Rogińska, B. Machaliński, M. Drozdzik, and E. Mijowska, Mater. Res. Bull. 48, 2636(2013).
    [36] H. C. Junqueira, D. Severino, L. G. Dias, M. S. Gugliotti, and M. S. Baptista, Phys. Chem. Chem. Phys. 4, 2320(2002).
    [37] J. E. Huang, Z. Q. Huang, Y. Yang, H. M. Zhu, and T. Q. Lian, J. Am. Chem. Soc. 132, 4858(2010).
    [38] I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, Biochim. Biophys. Acta 1657, 82(2004).
    [39] J. J. Snellenburg, S. Laptenok, R. Seger, K. M. Mullen, and I. H. M. van Stokkum, J. Stat. Software 49, 1(2012).
    [40] M. Kasha, Radiat. Res. 20, 55(1963).
    [41] F. C. Spano, Acc. Chem. Res. 43, 429(2010).
    [42] S. Verma, A. Ghosh, A. Das, and H. N. Ghosh, J. Phys. Chem. B 114, 8327(2010).
    [43] H. Yamagata and F. C. Spano, J. Chem. Phys. 136, 184901(2012).
    [44] J. C. Dean, D. G. Oblinsky, S. Rafiq, and G. D. Scholes, J. Phys. Chem. B 120, 440(2016).
    [45] M. Enescu, L. Krim, L. Lindqvist, and T. Q. Wu, J. Photochem. Photobiol. B 22, 165(1994).
    [46] D. A. Dunn, V. H. Lin, and I. E. Kochevar, Photochem. Photobiol. 53, 47(1991).
    [47] Z. B. Liu, X. Zhao, X. L. Zhang, X. Q. Yan, Y. P. Wu, Y. S. Chen, and J. G. Tian, J. Phys. Chem. Lett. 2, 1972(2011).
    [48] S. Kaniyankandy, S. N. Achary, S. Rawalekar, and H. N. Ghosh, J. Phys. Chem. C 115, 19110(2011).
    [49] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Adv. Mater. 22, 505(2010).
    [50] J. L. Ravanat, J. Cadet, K. Araki, H. E. Toma, M. H. G. Medeiros, and P. Di Mascio, Photochem. Photobiol. 68, 698(1998).
    [51] N. Kosui, K. Uchida, and M. Koizumi, Bull. Chem. Soc. Jpn. 38, 1958(1965).
    [52] D. Harmatz and G. Blauer, Photochem. Photobiol. 38, 385(1983).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1001) PDF downloads(518) Cited by()

Proportional views
Related

Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy

doi: 10.1063/1674-0068/30/cjcp1704070

Abstract: The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.

Da Ke, Lai-zhi Sui, Dun-li Liu, Yu-su Wang, Su-yu Li, Yuan-fei Jiang, An-min Chen, Ming-xing Jin. Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 389-394. doi: 10.1063/1674-0068/30/cjcp1704070
Citation: Da Ke, Lai-zhi Sui, Dun-li Liu, Yu-su Wang, Su-yu Li, Yuan-fei Jiang, An-min Chen, Ming-xing Jin. Hidden Relaxation Channels in Aqueous Methylene Blue after Functionalization of Graphene Oxide Probed by Transient Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 389-394. doi: 10.1063/1674-0068/30/cjcp1704070
Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return