Yu-lin Chen, Ming-ling Li, Yi-ming Wu, Si-jia Li, Yue Lin, Dong-xue Du, Huai-yi Ding, Nan Pan, Xiao-ping Wang. Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 325-332. doi: 10.1063/1674-0068/30/cjcp1704063
Citation: Yu-lin Chen, Ming-ling Li, Yi-ming Wu, Si-jia Li, Yue Lin, Dong-xue Du, Huai-yi Ding, Nan Pan, Xiao-ping Wang. Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 325-332. doi: 10.1063/1674-0068/30/cjcp1704063

Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures

doi: 10.1063/1674-0068/30/cjcp1704063
  • Received Date: 2017-04-05
  • Rev Recd Date: 2017-04-19
  • Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide interest not only for the fundamental research,but also for the application of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures.Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2.Due to the interaction between the In2Se3 and MoSe2 layers,the heterostructure shows the quenching and red-shift of photoluminescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignment of the heterostructure,and is further confirmed by Kevin probe force microscopy measurement.The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.
  • 加载中
  • [1] S. Z. Butler, S. M. Hollen, L. Y. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. X. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898(2013).
    [2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147(2011).
    [3] X. F. Li, M. W. Lin, A. A. Puretzky, J. C. Idrobo, C. Ma, M. F. Chi, M. Yoon, C. M. Rouleau, I. I. Kravchenko, D. B. Geohegan, and K. Xiao, Sci. Rep. 4, 5497(2014).
    [4] W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, Chem. Mater. 28, 4278(2016).
    [5] F. Ceballos, M. Z. Bellus, H. Y. Chiu, and H. Zhao, ACS Nano 8, 12717(2014).
    [6] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Nat. Commun. 6, 6242(2015).
    [7] P. Rivera, K. L. Seyler, H. Y. Yu, J. R. Schaibley, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, Science 351, 688(2016).
    [8] A. Pospischil, M. M. Furchi, and T. Mueller, Nat. Nanotechnol. 9, 257(2014).
    [9] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. D. Xu, Nat. Nanotechnol. 9, 268(2014).
    [10] K. N. Zhang, T. N. Zhang, G. H. Cheng, T. X. Li, S. X. Wang, W. Wei, X. H. Zhou, W. W. Yu, Y. Sun, P. Wang, D. Zhang, C. G. Zeng, X. J. Wang, W. D. Hu, H. J. Fan, G. Z. Shen, X. Chen, X. F. Duan, K. Chang, and N. Dai, ACS Nano 10, 3852(2016).
    [11] S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, Nat. Mater. 11, 764(2012).
    [12] W. Yang, G. R. Chen, Z. W. Shi, C. C. Liu, L. C. Zhang, G. B. Xie, M. Cheng, D. M. Wang, R. Yang, D. X. Shi, K. Watanabe, T. Taniguchi, Y. G. Yao, Y. B. Zhang, and G. Y. Zhang, Nat. Mater. 12, 792(2013).
    [13] A. K. Geim and I. V. Grigorieva, Nature 499, 419(2013).
    [14] R. Cheng, D. H. Li, H. L. Zhou, C. Wang, A. X. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. F. Duan, Nano Lett. 14, 5590(2014).
    [15] M. H. Chiu, C. D. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. S. Chang, C. H. Chen, M. Y. Chou, C. K. Shih, and L. J. Li, Nat. Commun. 6, 7666(2015).
    [16] H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Proc. Natl. Acad. Sci. USA. 111, 6198(2014).
    [17] C. H. Lee, G. H. Lee, A. M. Van Der Zande, W. C. Chen, Y. L. Li, M. Y. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676(2014).
    [18] S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. B. Li, R. Sinclair, and J. Q. Wu, Nano Lett. 14, 3185(2014).
    [19] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Nat. Mater. 14, 301(2015).
    [20] X. D. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. L. Li, X. P. Wu, Y. Tang, Q. L. Zhang, A. L. Pan, J. H. Jiang, R. Q. Yu, Y. Huang, and X. F. Duan, Nat. Nanotechnol. 9, 1024(2014).
    [21] Y. J. Gong, S. D. Lei, G. L. Ye, B. Li, Y. M. He, K. Keyshar, X. Zhang, Q. Z. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P. M. Ajayan, Nano Lett. 15, 6135(2015).
    [22] Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, Nat. Mater. 13, 1135(2014).
    [23] H. Heo, J. H. Sung, G. Jin, J. H. Ahn, K. Kim, M. J. Lee, S. Cha, H. Choi, and M. H. Jo, Adv. Mater. 27, 3803(2015).
    [24] C. M. Huang, S. F. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. D. Xu, Nat. Mater. 13, 1096(2014).
    [25] M. Y. Li, Y. M. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W. H. Chang, K. Suenaga, and L. J. Li, Science 349, 524(2015).
    [26] X. F. Li, M. W. Lin, J. H. Lin, B. Huang, A. A. Puretzky, C. Ma, K. Wang, W. Zhou, S. T. Pantelides, M. F. Chi, K. Kravchenko, J. Fowlkes, C. M. Rouleau, D. B. Geohegan, and K. Xiao, Sci. Adv. 2, e1501882(2016).
    [27] L. Liu, J. Park, D. A. Siegel, K. F. McCarty, K. W. Clark, W. Deng, L. Basile, J. C. Idrobo, A. P. Li, and G. Gu, Science 343, 163(2014).
    [28] Y. F. Yu, S. Hu, L. Q. Su, L. J. Huang, Y. Liu, Z. H. Jin, A. A. Purezky, D. B. Geohegan, K. W. Kim, Y. Zhang, and L. Y. Cao, Nano Lett. 15, 486(2015).
    [29] R. B. Jacobs-Gedrim, M. Shanmugam, N. Jain, C. A. Durcan, M. T. Murphy, T. M. Murray, R. J. Matyi, R. L. Moorell, and B. Yu, ACS Nano 8, 514(2014).
    [30] J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraıt, R. D'Agosta, and A. Castellanos-Gomez, Adv. Opt. Mater. 4, 1939(2016).
    [31] A. Carvalho, R. M. Ribeiro, and A. H. C. Neto, Phys. Rev. B 88, 115205(2013).
    [32] J. Xia, X. Huang, L. Z. Liu, M. Wang, L. Wang, B. Huang, D. D. Zhu, J. J. Li, C. Z. Gu, and X. M. Meng, Nanoscale 6, 8949(2014).
    [33] Y. J. Gong, G. L. Ye, S. D. Lei, G. Shi, Y. M. He, J. H. Lin, X. Zhang, R. Vajtai, S. T. Pantelides, W. Zhou, B. Li, and P. M. Ajayan, Adv. Funct. Mater. 22, 2009(2016).
    [34] A. Singh, G. Moody, K. Tran, M. E. Scott, V. Overbeck, G. Berghäuser, J. Schaibley, E. J. Seifert, D. Pleskot, N. M. Gabor, J. Q. Yan, D. G. Mandrus, M. Richter, E. Malic, X. D. Xu, and X. Q. Li, Phys. Rev. B 93, 041401(2016).
    [35] J. S. Ross, S. F. Wu, H. Y. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, arXiv preprint arXiv:1211.0072, (2012).
    [36] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. S. Zheng, S. L. Zhao, C. H. Jin, Y. F. Guo, H. L. Peng, and Z. F. Liu, J. Am. Chem. Soc. 135, 13274(2013).
    [37] K. Chen, X. Wan, J. X. Wen, W. G. Xie, Z. W. Kang, X. L. Zeng, H. J. Chen, and J. B. Xu, ACS Nano 9, 9868(2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1511) PDF downloads(1011) Cited by()

Proportional views
Related

Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures

doi: 10.1063/1674-0068/30/cjcp1704063

Abstract: Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide interest not only for the fundamental research,but also for the application of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures.Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2.Due to the interaction between the In2Se3 and MoSe2 layers,the heterostructure shows the quenching and red-shift of photoluminescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignment of the heterostructure,and is further confirmed by Kevin probe force microscopy measurement.The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.

Yu-lin Chen, Ming-ling Li, Yi-ming Wu, Si-jia Li, Yue Lin, Dong-xue Du, Huai-yi Ding, Nan Pan, Xiao-ping Wang. Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 325-332. doi: 10.1063/1674-0068/30/cjcp1704063
Citation: Yu-lin Chen, Ming-ling Li, Yi-ming Wu, Si-jia Li, Yue Lin, Dong-xue Du, Huai-yi Ding, Nan Pan, Xiao-ping Wang. Two Step Chemical Vapor Deposition of In2Se3/MoSe2 van der Waals Heterostructures[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 325-332. doi: 10.1063/1674-0068/30/cjcp1704063
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return