Ya-li Guo, Hong-chang Jin, Zhen-zhen Du, Xue-wu Ge, Heng-xing Ji. γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 461-466. doi: 10.1063/1674-0068/30/cjcp1703062
Citation: Ya-li Guo, Hong-chang Jin, Zhen-zhen Du, Xue-wu Ge, Heng-xing Ji. γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 461-466. doi: 10.1063/1674-0068/30/cjcp1703062

γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries

doi: 10.1063/1674-0068/30/cjcp1703062
  • Received Date: 2017-03-30
  • Rev Recd Date: 2017-04-22
  • We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rGO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA·h)/g which is 45% higher than the theoretical value of commercial graphite anode.
  • 加载中
  • [1] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272(2013).
    [2] (a) X. Zheng, H. Wang, C. Wang, Z. Deng, L. Chen, Y. Li, T. Hasan, B. and L. Su, Nano Energy 22, 269(2016).
    (b) C. Chen, Y. Huang, H. Zhang, X. Wang, Y. Wang, L. Jiao, and H. Yuan, J. Power Sources 314, 66(2016).
    (c) J. Hu, C. F. Sun, E. Gillette, Z. Gui, Y. Wang, and S. B. Lee, Nanoscale 8, 12958(2016).
    (d) D. Y. Park, Y. K. Sun, and S. T. Myung, J. Power Sources 280, 1(2015). (e) J. Wu, H. Chen, I. Byrd, S. Lovelace, and C. Jin, ACS Appl. Mat. Interfaces 8, 13946(2016).
    [3] (a) Y. Sun, X. Hu, W. Luo, F. Xia, and Y. Huang, Adv. Funct. Mater. 23, 2436(2013).
    (b) X. Fang, X. Lu, X. Guo, Y. Mao, Y. S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu, and L. Chen, Electrochem. Commun. 12, 1520(2010).
    [4] M. Ali, M. Fridman, M. Denayer, and P. Nagels, Phys. Status Solidi B 28, 193(1968).
    [5] (a) Y. Xia, Z. Xiao, X. Dou, H. Huang, X. Lu, R. Yan, Y. Gan, W. Zhu, J. Tu, and W. Zhang, ACS Nano 7, 7083(2013).
    (b) W. M. Chen, L. Qie, Y. Shen, Y. M. Sun, L. X. Yuan, X. L. Hu, W. X. Zhang, and Y. H. Huang, Nano Energy 2, 412(2013).
    (c) H. Jiang, Y. Hu, S. Guo, C. Yan, P. S. Lee, and C. Li, ACS Nano 8, 6038(2014).
    [6] X. Liu, C. Chen, Y. Zhao, and B. Jia, J. Nanomater. 2013, 1(2013).
    [7] A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183(2007).
    [8] (a) K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui, and L. Chen, ACS Appl. Mat. Interfaces 4, 658(2012).
    (b) S. Zhang, L. Zhu, H. Song, X. Chen, and J. Zhou, Nano Energy 10, 172(2014).
    [9] (a) L. M. Alrehaily, J. M. Joseph, A. Y. Musa, D. A. Guzonas, and J. C. Wren, Phys. Chem. Chem. Phys. 15, 98(2013).
    (b) L. M. Alrehaily, J. M. Joseph, J. C. Wren, J. Phys. Chem. C 119, 16321(2015).
    (c) A. Ansón-Casaos, J. A. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, and M. T. Martnez, Appl. Surf. Sci. 301, 264(2014).
    (d) B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fan, and J. Li, J. Mater. Chem. A 22, 7775(2012).
    [10] Y. Xiao, X. Wang, W. Wang, D. Zhao, and M. Cao, ACS Appl. Mat. Interfaces 6, 2051(2014).
    [11] D. Kang, Q. Liu, R. Si, J. Gu, W. Zhang, and D. Zhang, Carbon 99, 138(2016).
    [12] (a) Q. Sun, Z. Wang, Z. Zhang, Q. Yu, Y. Qu, J. Zhang, Y. Yu, and B. Xiang, ACS Appl. Mat. Interfaces 8, 6303(2016).
    (b) L. Li, A. Kovalchuk, H. Fei, Z. Peng, Y. Li, N. D. Kim, C. Xiang, Y. Yang, G. Ruan, and J. M. Tour, Adv. Energy Mater. 5, 1500171(2015).
    (c) R. Wang, C. Xu, J. Sun, L. Gao, and H. Yao, ACS Appl. Mat. Interfaces 6, 3427(2014).
    (d) M. Yu, A. Wang, Y. Wang, C. Li, and G. Shi, Nanoscale 6, 11419(2014). (e) T. Hu, X. Sun, H. Sun, G. Xin, D. Shao, C. Liu, and J. Lian, Phys. Chem. Chem. Phys. 16, 1060(2014). (f) Z. Y. Sui, C. Wang, Q. S. Yang, K. Shu, Y. W. Liu, B. H. Han, and G. G. Wallace, J. Mater. Chem. A 3, 18229(2015). (g) Z. S. Wu, W. Ren, L. Xu, F. Li, and H. M. Cheng, ACS Nano 5, 5463(2011).
    [13] H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding, A. Kohandehghan, X. Tan, B. Zahiri, B. C. Olsen, C. M. Holt, and D. Mitlin, Nano Lett. 14, 1987(2014).
    [14] Y. Xiao and M. Cao, ACS Appl. Mat. Interfaces 7, 12840(2015).
    [15] (a) H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, and T. Rajh, J. Phys. Chem. Lett. 2, 2560(2011).
    (b) J. Zhang, W. Zhang, T. He, I. S. Amiinu, Z. Kou, J. Li, and S. Mu, Carbon 115, 95(2017).
    [16] S. Ardizzone, G. Fregonara, and S. Trasatti, Electrochim. Acta 35, 263(1990).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1241) PDF downloads(463) Cited by()

Proportional views
Related

γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries

doi: 10.1063/1674-0068/30/cjcp1703062

Abstract: We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rGO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA·h)/g which is 45% higher than the theoretical value of commercial graphite anode.

Ya-li Guo, Hong-chang Jin, Zhen-zhen Du, Xue-wu Ge, Heng-xing Ji. γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 461-466. doi: 10.1063/1674-0068/30/cjcp1703062
Citation: Ya-li Guo, Hong-chang Jin, Zhen-zhen Du, Xue-wu Ge, Heng-xing Ji. γ-Ray Irradiation-Derived MnO/rGO Composites for High Performance Lithium Ion Batteries[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 461-466. doi: 10.1063/1674-0068/30/cjcp1703062
Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return