Zhuoran Kuang, Xian Wang, Zhen Wang, Guiying He, Qianjin Guo, Lei He, Andong Xia. Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 259-267. doi: 10.1063/1674-0068/30/cjcp1703058
Citation: Zhuoran Kuang, Xian Wang, Zhen Wang, Guiying He, Qianjin Guo, Lei He, Andong Xia. Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 259-267. doi: 10.1063/1674-0068/30/cjcp1703058

Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics

doi: 10.1063/1674-0068/30/cjcp1703058
  • Received Date: 2017-03-29
  • Rev Recd Date: 2017-05-16
  • To elucidate the nature of low-lying triplet states and the effect of ligand modifications on the excited-state properties of functional cationic iridium complexes,the solventdependent excited-state dynamics of two phosphorescent cationic iridium (III) complexes,namely[Ir (dph-oxd)2(bpy)]PF6( 1 ) and[Ir (dph-oxd)2(pzpy)]PF6( 2 ),were investigated by femtosecond and nanosecond transient absorption spectroscopy.Upon photoexcitation to the metal-to-ligand charge-transfer (MLCT) states,the excited-state dynamics shows a rapid process (τ=0.7-3 ps) for the formation of solvent stabilized 3MLCT states,which significantly depends on the solvent polarity for both 1 and 2 .Sequentially,a relatively slow process assigned to the vibrational cooling/geometrical relaxation and a long-lived phosphorescent emissive state is identified.Due to the different excited-state electronic structures regulated by ancillary ligands,the solvation-induced stabilization of the 3MLCT state in 1 is faster than that in 2 .The present results provide a better sight of excited-state relaxation dynamics of ligand-related iridium (III) complexes and solvation effects on triplet manifolds.
  • 加载中
  • [1] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature 403, 750(2000).
    [2] X. L. Yang, G. J. Zhou, and W. Y. Wong, Chem. Soc. Rev. 44, 8484(2015).
    [3] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048(2001).
    [4] A. Monguzzi, R. Tubino, and F. Meinardi, Phys. Rev. B 77, 155122(2008).
    [5] T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev. 254, 2560(2010).
    [6] W. Y. Wong and C. L. Ho, Acc. Chem. Res. 43, 1246(2010).
    [7] S. Y. Takizawa, R. Aboshi, and S. Murata, Photochem. Photobiol. Sci. 10, 895(2011).
    [8] J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, and S. Bernhard, J. Am. Chem. Soc. 127, 7502(2005).
    [9] L. He, D. X. Ma, L. Duan, Y. G. Wei, J. Qiao, D. Q. Zhang, G. F. Dong, L. D. Wang, and Y. Qiu, Inorg. Chem. 51, 4502(2012).
    [10] Z. Wang, L. He, L. Duan, J. Yan, R. R. Tang, C. Y. Pan, and X. Z. Song, Dalton Trans. 44, 15914(2015).
    [11] Y. M. You and S. Y. Park, Dalton Trans. 1267(2009).
    [12] Y. M. You and W. Nam, Chem. Soc. Rev. 41, 7061(2012).
    [13] E. M. Kober and T. J. Meyer, Inorg. Chem. 21, 3967(1982).
    [14] L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, and F. Barigelletti, Photochemistry and Photophysics of Coordination Compounds:Iridium, V. Balzani and S. Campagna Eds., Berlin, Heidelberg:Springer, 143(2007).
    [15] B. Ma, P. I. Djurovich, S. Garon, B. Alleyne, and M. E. Thompson, Adv. Funct. Mater. 16, 2438(2006).
    [16] M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, Adv. Mater. 14, 1633(2002).
    [17] J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin, N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau, and M. E. Thompson, Inorg. Chem. 44, 1713(2005).
    [18] G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, Chem. Phys. Lett. 450, 292(2008).
    [19] G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, J. Phys. Chem. A 113, 2(2009).
    [20] G. J. Hedley, A. Ruseckas, and I. D. W. Samuel, J. Phys. Chem. A 114, 8961(2010).
    [21] C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai, and C. C. Wu, Angew. Chem. Int. Ed. 46, 2418(2007).
    [22] D. Escudero and W. Thiel, Inorg. Chem. 53, 11015(2014).
    [23] P. T. Chou, Y. I. Liu, H. W. Liu, and W. S. Yu, J. Am. Chem. Soc. 123, 12119(2001).
    [24] J. Seo, S. Kim, and S. Y. Park, J. Am. Chem. Soc. 126, 11154(2004).
    [25] W. Dang, J. J. Bai, L. S. Zhang, and Y. X. Weng, Chin. J. Chem. Phys. 29, 147(2016).
    [26] J. K. McCusker, Acc. Chem. Res. 36, 876(2003).
    [27] S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, J. Chem. Phys. 115, 3256(2001).
    [28] L. L. Jiang, W. L. Liu, Y. F. Song, X. He, Y. Wang, H. L. Wu, and Y. Q. Yang, Chin. J. Chem. Phys. 25, 577(2012).
    [29] S. Murphy, L. B. Huang, and P. V. Kamat, J. Phys. Chem. C 115, 22761(2011).
    [30] G. B. Shaw, C. D. Grant, H. Shirota, E. W. Jr. Castner, G. J. Meyer, and L. X. Chen, J. Am. Chem. Soc. 129, 2147(2007).
    [31] L. Q. Song, J. Feng, X. S. Wang, J. H. Yu, Y. J. Hou, P. H. Xie, B. W. Zhang, J. F. Xiang, X. C. Ai, and J. P. Zhang, Inorg. Chem. 42, 3393(2003).
    [32] C. S. Ma, C. T. L. Chan, W. M. Kwok, and C. M. Che, Chem. Sci. 3, 1883(2012).
    [33] J. H. Hu, Q. Zhang, and Y. Luo, J. Phys. Chem. Lett. 7, 3908(2016).
    [34] W. Y. Wong and C. L. Ho, Coord. Chem. Rev. 253, 1709(2009).
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09(Revision A.02), Wallingford CT:Gaussian Inc., (2009).
    [36] Y. Li, M. Zhou, Y. L. Niu, Q. J. Guo, and A. D. Xia, J. Chem. Phys. 143, 034309(2015).
    [37] M. Zhou, S. Vdović, S. Long, M. Z. Zhu, L. Y. Yan, Y. Y. Wang, Y. L. Niu, X. F. Wang, Q. J. Guo, R. C. Jin, and A. D. Xia, J. Phys. Chem. A 117, 10294(2013).
    [38] I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, Biochim. Biophys. Acta 1657, 82(2004).
    [39] J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen, and I. H. M. van Stokkum, J. Stat. Soft. 49, 1(2012).
    [40] M. Zhou, Z. Lei, Q. J. Guo, Q. M. Wang, and A. D. Xia, J. Phys. Chem. C 119, 14980(2015).
    [41] C. Y. Chen, H. R. Tsai, K. Y. Lu, H. H. Yao, Y. H. O. Yang, C. H. Cheng, and I. C. Chen, J. Chin. Chem. Soc. 60, 965(2013).
    [42] M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Guedel, M. Fortsch, and H. B. Buergi, Inorg. Chem. 33, 545(1994).
    [43] S. Sprouse, K. A. King, P. J. Spellane, and R. J. Watts, J. Am. Chem. Soc. 106, 6647(1984).
    [44] M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311(1995).
    [45] M. L. Jia, X. N. Ma, L. Y. Yan, H. F. Wang, Q. J. Guo, X. F. Wang, Y. Y. Wang, X. W. Zhan, and A. D. Xia, J. Phys. Chem. A 114, 7345(2010).
    [46] G. G. Shan, H. B. Li, H. T. Cao, D. X. Zhu, P. Li, Z. M. Su, and Y. Liao, Chem. Commun. 48, 2000(2012).
    [47] T. F. Mastropietro, Y. J. Yadav, E. I. Szerb, A. M. Talarico, M. Ghedini, and A. Crispini, Dalton Trans. 41, 8899(2012).
    [48] H. B. Sun, S. J. Liu, W. P. Lin, K. Y. Zhang, W. Lv, X. Huang, F. W. Huo, H. R. Yang, G. Jenkins, Q. Zhao, and W. Huang, Nat. Commun. 5, 3601(2014).
    [49] X. Q. Zhang, Z. G. Chi, Y. Zhang, S. W. Liu, and J. R. Xu, J. Mater. Chem. C 1, 3376(2013).
    [50] Y. Han, H. T. Cao, H. Z. Sun, Y. Wu, G. G. Shan, Z. M. Su, X. G. Hou, and Y. Liao, J. Mater. Chem. C 2, 7648(2014).
    [51] H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa, N. Lardiés, M. K. Nazeeruddin, and E. Ortı, J. Mater. Chem. 17, 5032(2007).
    [52] A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, and M. E. Thompson, Inorg. Chem. 44, 8723(2005).
    [53] Y. P. Wang, S. Zhang, S. M. Sun, K. Liu, and B. Zhang, Chin. J. Chem. Phys. 26, 651(2013).
    [54] J. R. Huang, O. Buyukcakir, M. W. Mara, A. Coskun, N. M. Dimitrijevic, G. Barin, O. Kokhan, A. B. Stickrath, R. Ruppert, D. M. Tiede, J. F. Stoddart, J. P. Sauvage, and L. X. Chen, Angew. Chem. Int. Ed. 51, 12711(2012).
    [55] M. Zhou, S. R. Long, X. K. Wan, Y. Li, Y. L. Niu, Q. J. Guo, Q. M. Wang, and A. D. Xia, Phys. Chem. Chem. Phys. 16, 18288(2014).
    [56] X. X. Zhang, M. Liang, N. P. Ernsting, and M. Maroncelli, J. Phys. Chem. B 117, 4291(2013).
    [57] V. A. Lenchenkov, C. X. She, and T. Q. Lian, J. Phys. Chem. B 108, 16194(2004).
    [58] G. Ramakrishna, T. Goodson Ⅲ, J. E. Rogers-Haley, T. M. Cooper, D. G. McLean, and A. Urbas, J. Phys. Chem. C 113, 1060(2009).
    [59] Y. J. Sun, Y. Liu, and C. Turro, J. Am. Chem. Soc. 132, 5594(2010).
    [60] Y. J. Sun and C. Turro, Inorg. Chem. 49, 5025(2010).
    [61] S. Q. Yang and K. L. Han, J. Phys. Chem. A 120, 4961(2016).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1106) PDF downloads(607) Cited by()

Proportional views
Related

Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics

doi: 10.1063/1674-0068/30/cjcp1703058

Abstract: To elucidate the nature of low-lying triplet states and the effect of ligand modifications on the excited-state properties of functional cationic iridium complexes,the solventdependent excited-state dynamics of two phosphorescent cationic iridium (III) complexes,namely[Ir (dph-oxd)2(bpy)]PF6( 1 ) and[Ir (dph-oxd)2(pzpy)]PF6( 2 ),were investigated by femtosecond and nanosecond transient absorption spectroscopy.Upon photoexcitation to the metal-to-ligand charge-transfer (MLCT) states,the excited-state dynamics shows a rapid process (τ=0.7-3 ps) for the formation of solvent stabilized 3MLCT states,which significantly depends on the solvent polarity for both 1 and 2 .Sequentially,a relatively slow process assigned to the vibrational cooling/geometrical relaxation and a long-lived phosphorescent emissive state is identified.Due to the different excited-state electronic structures regulated by ancillary ligands,the solvation-induced stabilization of the 3MLCT state in 1 is faster than that in 2 .The present results provide a better sight of excited-state relaxation dynamics of ligand-related iridium (III) complexes and solvation effects on triplet manifolds.

Zhuoran Kuang, Xian Wang, Zhen Wang, Guiying He, Qianjin Guo, Lei He, Andong Xia. Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 259-267. doi: 10.1063/1674-0068/30/cjcp1703058
Citation: Zhuoran Kuang, Xian Wang, Zhen Wang, Guiying He, Qianjin Guo, Lei He, Andong Xia. Phosphorescent Cationic Iridium (III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands:Solvent-Dependent Excited-State Dynamics[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 259-267. doi: 10.1063/1674-0068/30/cjcp1703058
Reference (61)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return