Li-ya Lu, Ying-jie Zhang, Jie-jie Chen, Zhong-hua Tong. Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 423-428. doi: 10.1063/1674-0068/30/cjcp1703057
Citation: Li-ya Lu, Ying-jie Zhang, Jie-jie Chen, Zhong-hua Tong. Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 423-428. doi: 10.1063/1674-0068/30/cjcp1703057

Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

doi: 10.1063/1674-0068/30/cjcp1703057
  • Received Date: 2017-03-29
  • Rev Recd Date: 2017-05-22
  • Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structureactivity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
  • 加载中
  • [1] R. N. Das and K. Roy, Mol. Divers. 17, 151(2013).
    [2] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nat. Mater. 8, 621(2009).
    [3] S. P. M. Ventura, A. M. M. Goncalves, T. Sintra, J. L. Pereira, F. Goncalves, and J. A. P. Coutinho, Ecotoxicology 22, 1(2013).
    [4] C. Wang, Z. B. Wei, L. S. Wang, P. Sun, and Z. Y. Wang, Ecotox. Environ. Safe. 115, 112(2015).
    [5] S. Stolte, S. Steudte, O. Areitioaurtena, F. Pagano, J. Thöming, P. Stepnowski, and A. Igartua, Chemosphere 89, 1135(2012).
    [6] K. Roy, R. N. Das, and P. L. A. Popelier, Chemosphere 112, 120(2014).
    [7] C. Samoriì, G. Sciutto, L. Pezzolesi, P. Galletti, F. Guerrini, R. Mazzeo, R. Pistocchi, S. Prati, and E. Tagliavini, Chem. Res. Toxicol. 24, 392(2011).
    [8] F. Y. Yan, Q. Shang, S. Q. Xia, Q. Wang, and P. S. Ma, J. Hazard. Mater. 286, 410(2015).
    [9] T. P. Pham, C. W. Cho, and Y. S. Yun, Water Res. 44, 352(2010).
    [10] M. McLaughlin, M. J. Earle, M. A. Gilea, B. F. Gilmore, S. P. Gorman, and K. R. Seddon, Green Chem. 13, 2794(2011).
    [11] S. P. M. Ventura, C. S. Marques, A. A. Rosatella, C. A. M. Afonso, F. Goncalves, and J. A. P. Coutinho, Ecotox. Environ. Safe. 76, 162(2012).
    [12] T. Liu, L. S. Zhu, J. H. Wang, J. Wang, J. Zhang, X. Sun, and C. Zhang, Sci. Rep. 5, 18444(2015).
    [13] P. Luis, I. Ortiz, R. Aldaco, and A. Irabien, Ecotox. Environ. Safe. 67, 423(2007).
    [14] S. Bruzzone, C. Chiappe, S. E. Focardi, C. Pretti, and M. Renzi, Chem. Eng. J. 175, 17(2011).
    [15] M. Alvarez-Guerra and A. Irabien, Green Chem. 13, 1507(2011).
    [16] R. N. Das and K. Roy, Toxicol. Res. 1, 186(2012).
    [17] R. N. Das and K. Roy, Chemosphere 104, 170(2014).
    [18] K. Roy, R. N. Das, and P. L. A. Popelier, Environ. Sci. Pollut. Res. 22, 6634(2015).
    [19] M. C. K. Leung, P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke, M. Aschner, and J. N. Meyer, Toxicol. Sci. 106, 5(2008).
    [20] S. Hoss, K. Schlottmann, and W. Traunspurger, Environ. Sci. Technol. 45, 10219(2011).
    [21] P. W. Sternberg, Cell 105, 173(2001).
    [22] S. Brenner, Genetics 77, 71(1974).
    [23] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865(1996).
    [24] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671(1992).
    [25] B. Delley, J. Chem. Phys. 92, 508(1990).
    [26] B. Delley, J. Chem. Phys. 113, 7756(2000).
    [27] D. Rogers and A. J. Hopfinger, J. Chem. Inf. Comp. Sci. 34, 854(1994).
    [28] X. Wu, Z. H. Tong, L. L. Li, and H. Q. Yu, Chemosphere 93, 2399(2013).
    [29] J. M. Ma, L. L. Cai, B. J. Zhang, L. W. Hu, X. Y. Li, and J. J. Wang, Ecotoxicol. Environ. Saf. 73, 1465(2010).
    [30] J. Ranke, K. Molter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, and B. Jastorff, Ecotoxicol. Environ. Saf. 58, 396(2004).
    [31] A. Latala, P. Stepnowski, M. Nedzi, and W. Mrozik, Aquat. Toxicol. 73, 91(2005).
    [32] S. Stolte, J. Arning, U. Bottin-Weber, M. Matzke, F. Stock, K. Thiele, M. Uerdingen, U. Welz-Biermann, B. Jastorff, and J. Ranke, Green Chem. 8, 621(2006).
    [33] C. W. Cho, T. P. T. Pham, Y. C. Jeon, and Y. S. Yun, Green Chem. 10, 67(2008).
    [34] D. J. Couling, R. J. Bernot, K. M. Docherty, J. K. Dixona, and E. J. Maginn, Green Chem. 8, 82(2006).
    [35] R. N. Das, T. E. Sintra, J. A. P. Coutinho, S. P. M. Ventura, K. Roy, and P. L. A. Popelier, Toxicol. Res. 5, 1388(2016).
    [36] A. K. Ghose and G. M. Crippen, J. Comput. Chem. 7, 565(1986).
    [37] A. R. Katritzky and E. V. Gordeeva, J. Chem. Inf. Comput. Sci. 33, 835(1993).
    [38] A. Latala, M. Nedzi, and P. Stepnowski, Green Chem. 11, 580(2009).
    [39] C. Pretti, C. Chiappe, I. Baldetti, S. Brunini, G. Monni, and L. Intorre, Ecotoxicol. Environ. Safe. 72, 1170(2009).
    [40] M. Fakhraee and M. R. Gholami, Ind. Eng. Chem. Res. 54, 11678(2015).
    [41] Y. Li, S. Gao, H. Jing, L. Qi, J. Ning, Z. Tan, K. Yang, C. Zhao, L. Ma, and G. Li, Toxicol. Res. 2, 403(2013).
    [42] P. H. Harlow, S. J. Perry, S. Widdison, S. Daniels, E. Bondo, C. Lamberth, R. A. Currie, and A. J. Flemming, Sci. Rep. 6, 22965(2016).
    [43] L. Feng, S. S. Liu, K. Li, H. X. Tang, and H. L. Liu, J. Hazard. Mater. 327, 11(2017).
    [44] T. Kaletta and M. O. Hengartner, Nat. Rev. Drug Discov. 5, 387(2006).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(856) PDF downloads(659) Cited by()

Proportional views
Related

Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study

doi: 10.1063/1674-0068/30/cjcp1703057

Abstract: Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structureactivity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.

Li-ya Lu, Ying-jie Zhang, Jie-jie Chen, Zhong-hua Tong. Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 423-428. doi: 10.1063/1674-0068/30/cjcp1703057
Citation: Li-ya Lu, Ying-jie Zhang, Jie-jie Chen, Zhong-hua Tong. Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans:a Quantitative Structure-Activity Relationship Study[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 423-428. doi: 10.1063/1674-0068/30/cjcp1703057
Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return