Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. doi: 10.1063/1674-0068/30/cjcp1703055
Citation: Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. doi: 10.1063/1674-0068/30/cjcp1703055

Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides

doi: 10.1063/1674-0068/30/cjcp1703055
  • Received Date: 2017-03-27
  • Rev Recd Date: 2017-06-03
  • Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N-oxides with different energetic substituent groups (-NH2, -N3, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH-and -NH-NH-are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -N3, -CH2-CH2-, and -N=N-are inappropriate.
  • 加载中
  • [1] X. X. Zhao, S. H. Li, Y. Wang, Y. C. Li, F. Q. Zhao, and S. P. Pang, J. Mater. Chem. A 4, 5495(2016).
    [2] M. Zheng, X. H. Li, H. L. Cui, and R. Z. Zhang, Chin. J. Chem. Phys. 29, 349(2016).
    [3] Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mater. Chem. A 2, 13006(2014).
    [4] J. H. Zhang and J. M. Shreeve, J. Am. Chem. Soc. 136, 4437(2014).
    [5] J. H. Zhang, Q. M. Zhang, T. T. Vo, D. A. Parrish, and J. M. Shreeve, J. Am. Chem. Soc. 137, 1697(2015).
    [6] T. M. Klapötke, P. C. Schmid, S. Schnell, and J. Stierstorfer, J. Mater. Chem. A 3, 2658(2015).
    [7] P. Yin and J. M. Shreeve, Angew. Chem. Int. Ed. 54, 14513(2015).
    [8] C. B. Aakeröy, T. K. Wijethunga, and J. Despe, Chem. Eur. J. 21, 11029(2015).
    [9] C. Y. Zhang, X. G. Xue, Y. F. Cao, J. H. Zhou, A. B. Zhang, H. Z. Li, Y. Zhou, R. J. Xu, and T. Gao CrystEngComm 16, 5905(2014).
    [10] D. Hong, Y. Li, S. Zhu, L. Zhang, and C. Pang, Cent. Eur. J. Energ. Mater. 12, 47(2015).
    [11] Q. H. Zhang and J. M. Shreeve, Angew. Chem. Int. Ed. 53, 2540(2014).
    [12] Y. Shang, B. Jin, R. F. Peng, Q. Q. Liu, B. S. Tan, and Z. C. Guo, J. Zhao, and Q. C. Zhang, Dalton Trans. 45, 13881(2016).
    [13] Q. Yang, X. X. Song, G. W. Zhao, G. L. Yang, L. L. Yang, Q. Wei, G. Xie, S. P. Chen, and S. L. Gao, Eur. J. Inorg. Chem. 31, 5052(2016).
    [14] D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, Chem. Eur. J. 19, 4602(2013).
    [15] N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, J. Mater. Chem. 22, 20418(2012).
    [16] B. Yuan, Z. J. Yu, and E. R. Bernstein, J. Phys. Chem. A 119, 2965(2015).
    [17] Q. An, T. Cheng, W. A. Goddard Ⅲ, and S. V. Zybin, J. Phys. Chem. C 119, 2196(2015).
    [18] V. P. Sinditskii, S. A. Filatov, V. I. Kolesov, K. O. Kapranov, A. F. Asachenko, M. S. Nechaev, V. V. Lunin, and N. I. Shishov, Thermochim. Acta 614, 85(2015).
    [19] N. Fischer, L. Gao, T. M. Klapötke, and J. Stierstörfer, Polyhedron 51, 201(2013).
    [20] M. J. Kamlet and S. J. Jacobs, J. Chem. Phys. 48, 23(1968).
    [21] P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbé, Mol. Phys. 107, 2095(2009).
    [22] P. W. Atkins, Physical Chemistry, Oxford: Oxford University Press, (1982).
    [23] E. F. C. Byrd and B. M. Rice, J. Phys. Chem. A 110, 1005(2006).
    [24] M. Pospíšíl, P. Vávra, M. C. Concha, J. S. Murray, and P. Politzer, J. Mol. Model. 17, 2569(2011).
    [25] P. Politzer and J. S. Murray, J. Mol. Model. 20, 2223(2014).
    [26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 09, Revision A. 01. Pittsburgh, PA: Gaussian, Inc. (2009).
    [27] A. M. Astakhov, R. S. Stepanov, and A. Y. Babushkin, Combust. Explos. Shock Waves 34, 85(1998).
    [28] W. A. Trzciński, S. Cudziło, Z. Chyłek, and L. Szymańczyk, J. Hazard. Mater. 157, 605(2008).
    [29] Q. Wu, W. H. Zhu, and H. M. Xiao, RSC Adv. 4, 3789(2014).
    [30] M. X. Zhang, P. E. Eaton, and R. Gilardi, Angew. Chem. Int. Ed. 39, 401(2000).
    [31] B. M. Rice and J. J. Hare, J. Phys. Chem. A 106, 1770(2002).
    [32] W. H. Zhu and H. M. Xiao, Struct. Chem. 21, 657(2010).
    [33] Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mol. Model. 19, 4039(2013).
    [34] Q. Wu, W. H. Zhu, and H. M. Xiao, J. Phys. Chem. C 117, 16830(2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(917) PDF downloads(522) Cited by()

Proportional views
Related

Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides

doi: 10.1063/1674-0068/30/cjcp1703055

Abstract: Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N-oxides with different energetic substituent groups (-NH2, -N3, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH-and -NH-NH-are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -N3, -CH2-CH2-, and -N=N-are inappropriate.

Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. doi: 10.1063/1674-0068/30/cjcp1703055
Citation: Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. doi: 10.1063/1674-0068/30/cjcp1703055
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return