Li-lin Jiang, Wei-long Liu, Yan-qiang Yang. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 506-512. doi: 10.1063/1674-0068/30/cjcp1703054
Citation: Li-lin Jiang, Wei-long Liu, Yan-qiang Yang. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 506-512. doi: 10.1063/1674-0068/30/cjcp1703054

Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent

doi: 10.1063/1674-0068/30/cjcp1703054
  • Received Date: 2017-03-27
  • The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states.
  • 加载中
  • [1] G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).
    [2] T. Polívka and H. A. Frank, Acc. Chem. Res. 43, 1125 (2010).
    [3] T. Polívka and V. Sundström, Chem. Rev. 104, 2021 (2004).
    [4] T. Polvka and V. Sundström, Chem. Phys. Lett. 477, 1 (2009).
    [5] R. Edge, D. J. McGarvey, and T. G. Truscott, J. Photochem. Photobiol. B 41, 189 (1997).
    [6] B. Durbeej and L. A. Eriksson, Chem. Phys. Lett. 375, 30 (2003).
    [7] W. L. Liu, Z. G. Wang, Z. R. Zheng, A. H. Li, and W. H. Su, J. Phys. Chem. A 112, 10580 (2008).
    [8] H. M. Vaswani, C. P. Hsu, M. Head-Gordon, and G. R. Fleming, J. Phys. Chem. B 107, 7940 (2003).
    [9] S. Shima, R. P. Ilagan, N. Gillespie, B. J. Sommer, R. G. Hiller, F. P. Sharples, H. A. Frank, and R. R. Birge, J. Phys. Chem. A 107, 8052 (2003).
    [10] M. Macernis, J. Sulskus, S. Malickaja, B. Robert, and L. Valkunas, J. Phys. Chem. A 118, 1817 (2014).
    [11] M. Macernis, D. Galzerano, J. Sulskus, E. Kish, Y. H. Kim, S. Koo, L. Valkunas, and B. Robert, J. Phys. Chem. A 119, 56 (2015).
    [12] M. Fuciman, M. Durchan, V. Šlouf, G. Kesan, and T. Polívka, Chem. Phys. Lett. 568/569, 21 (2013).
    [13] R. P. Ilagan, R. L. Christensen, T. W. Chapp, G. N. Gibson, T. Pascher, T. Polvka, and H. A. Frank, J. Phys. Chem. A 109, 3120 (2005).
    [14] A. Dreuw, J. Phys. Chem. A 110, 4592 (2006).
    [15] N. Christensson, K. Ždek, N. C. M. Magdaong, A. M. LaFountain, H. A. Frank, and D. Zigmantas, J. Phys. Chem. B 117, 11209 (2013).
    [16] A. Kaczor, K. Turnau, and M. Baranska, Analyst 136, 1109 (2011).
    [17] T. Wende, M. Liebel, C. Schnedermann, R. J. Pethick, and P. Kukura, J. Phys. Chem. A 118, 9976 (2014).
    [18] M. Liebel, C. Schnedermann, T.Wende, and P. Kukura, J. Phys. Chem. A 119, 9506 (2015).
    [19] K. Vijayalakshmi, A. Jha, and J. Dasgupta, J. Phys. Chem. B 119, 8669 (2015).
    [20] W. M. Liu, Y. Liu, K. J. Liu, Y. L. Yan, L. J. Guo, C. H. Xu, and S. X. Qian, Chin. Phys. 15, 1725 (2006).
    [21] S. Amarie, U. Förster, N. Gildenhff, A. Dreuw, and J. Wachtveitl, Chem. Phys. 373, 8 (2010).
    [22] Y. M. A. Naguib, J. Agric. Food Chem. 48, 1150 (2000).
    [23] I. Higuera-Ciapara, L. Félix-Valenzuela, and F. M. Goycoolea, Crit. Rev. Food Sci. Nutr. 46, 185 (2006).
    [24] B. Leibovitz, M. L. Hu, and A. L. Tappel, J. Nutr. 120, 97 (1990).
    [25] R. Zamora, F. J. Hidalgo, and A. L. Tappel, J. Nutr. 121, 50 (1991).
    [26] R. J. Weesie, F. J. H. M. Jansen, J. C. Merlin, J. Lugtenburg, G. Britton, and H. J. M. de Groot, Biochemistry 36, 7288 (1997).
    [27] A. A. C. van Wijk, A. Spaans, N. Uzunbajakava, C. Otto, H. J. M. de Groot, J. Lugtenburg, and F. Buda, J. Am. Chem. Soc. 127, 1438 (2005).
    [28] G. J. Zhao and K. L. Han, Acc. Chem. Res. 45, 404 (2012).
    [29] M. Rana, N. Singla, A. R. D. Pathak, C. Narayana, and P. Chowdhury, Vib. Spectrosc. 89, 16 (2017).
    [30] J. Su and D. X. Tian, New J. Chem. 38, 568 (2014).
    [31] Y. F. Liu, J. X. Ding, R. Q. Liu, D. H. Shi, and J. F. Sun, J. Photoch. Photobio. A 201, 203 (2009).
    [32] A. C. Wirtz, M. C. van Hemert, J. Lugtenburg, H. A. Frank, and E. J. J. Groenen, Biophys. J. 93, 981 (2007).
    [33] N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsena, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009).
    [34] W. L. Liu, Z. G. Wang, Z. R. Zheng, L. L. Jiang, Y. Q. Yang, L. C. Zhao, and W. H. Su, Chin. J. Chem. 30, 2573 (2012).
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, and J. A. Montgomery, Gaussian 09, Revision E.01, Wallingford, CT: Gaussian Inc., (2013).
    [36] A. P. Scott and L. Radom, J. Phys. Chem. 100, 16502 (1996).
    [37] G. J. Zhao and K. L. Han, ChemPhysChem 9, 1842 (2008).
    [38] G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han, J. Phys. Chem. B 111, 8940 (2007).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1204) PDF downloads(616) Cited by()

Proportional views
Related

Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent

doi: 10.1063/1674-0068/30/cjcp1703054

Abstract: The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states.

Li-lin Jiang, Wei-long Liu, Yan-qiang Yang. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 506-512. doi: 10.1063/1674-0068/30/cjcp1703054
Citation: Li-lin Jiang, Wei-long Liu, Yan-qiang Yang. Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 506-512. doi: 10.1063/1674-0068/30/cjcp1703054
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return