Shu-ting Liu, Tao Su, Peng Zhang, Ze-jie Fei, Hong-tao Liu. Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 372-378. doi: 10.1063/1674-0068/30/cjcp1703046
Citation: Shu-ting Liu, Tao Su, Peng Zhang, Ze-jie Fei, Hong-tao Liu. Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 372-378. doi: 10.1063/1674-0068/30/cjcp1703046

Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy

doi: 10.1063/1674-0068/30/cjcp1703046
  • Received Date: 2017-03-21
  • Rev Recd Date: 2017-06-20
  • On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O22- and O2- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UVVis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NaNO3 are also obtained and compared with that of HTS.
  • 加载中
  • [1] H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, Renew. Sustain. Energy Rev. 22, 466(2013).
    [2] B. Xu, P. W. Li, and C. Chan, Appl. Energy 160, 286(2015).
    [3] R. I. Dunn, P. J. Hearps, and M. N. Wright, Proc. IEEE 100, 504(2012).
    [4] L. J. Wang and Q. Y. Yan, Mater. Sci. 5, 72(2015).
    [5] D. Kearney, U. Herrmann, P. Nava, B. Kelly, R. Mahoney, J. Pacheco, R. Cable, N. Potrovitza, D. Blake, and H. Price, J. Sol. Energy Eng. 125, 293(2003).
    [6] K. Vignarooban, X. H. Xu, A. Arvay, K. Hsu, and A. M. Kannan, Appl. Energy 146, 383(2015).
    [7] U. Herrmann, B. Kelly, and H. Price, Energy 29, 883(2004).
    [8] D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, and N. Potrovitza, Energy 29, 861(2004).
    [9] G. J. Janz and G. N. Truong, J. Chem. Eng. Data 28, 201(1983).
    [10] C. T. Yang, X. L. Wei, W. L. Wang, Z. H. Lin, J. Ding, Y. Wang, Q. Peng, and J. P. Yang, Appl. Energy 184, 346(2016).
    [11] J. Alexander Jr. and S. G. Hindin, Ind. Eng. Chem. 39, 1044(1947).
    [12] Q. Peng, X. X. Yang, J. Ding, X. L. Wei, and J. P. Yang, CIESC J. 64, 1507(2013).
    [13] R. I. Olivares, Sol. Energy 86, 2576(2012).
    [14] K. H. Stern, J. Phys. Chem. Ref. Data 1, 747(1972).
    [15] C. M. Kramer, Z. A. Munir, and J. V. Volponi, Sol. Energy 29, 437(1982).
    [16] R. N. Kust and J. D. Burke, Inorg. Nucl. Chem. Lett. 6, 333(1970).
    [17] A. A. El Hosary, D. H. Kerridge, and A. M. Shama El Din, Oxide Species in Molten Salts. Ionic Liquids, D. Inman and D. G. Lovering Eds., New York: Springer, (1981).
    [18] E. S. Freeman, J. Am. Chem. Soc. 79, 838(1957).
    [19] B. D. Bond and P. W. M. Jacobs, J. Chem. Soc. A 1265(1966).
    [20] D. A. Nissen and D. E. Meeker, Inorg. Chem. 22, 716(1983).
    [21] P. G. Zambonin and J. Jordan, J. Am. Chem. Soc. 89, 6365(1967).
    [22] P. G. Zambonin and J. Jordan, J. Am. Chem. Soc. 91, 2225(1969).
    [23] P. G. Zambonin, F. Paniccia, and A. Bufo, J. Phys. Chem. 76, 422(1972).
    [24] P. G. Zambonin, Chemischer Informationsdienst 5, 1294(1974).
    [25] M. Hayyan, M. A. Hashim, and I. M. Alnashef, Chem. Rev. 116, 3029(2016).
    [26] D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, Chem. Phys. Lett. 25, 175(1974).
    [27] R. R. Smardzewski and L. Andrews, J. Chem. Phys. 57, 1327(1972).
    [28] L. Andrews, J. Mol. Spectrosc. 61, 337(1976).
    [29] A. U. Khan and S. D. Mahanti, J. Chem. Phys. 63, 2271(1975).
    [30] M. Bosch and W. Kanzig, Helv. Phys. Acta 48, 743(1975).
    [31] T. Ozawa and A. Hanaki, FEBS Lett. 74, 99(1977).
    [32] L. Andrews, J. Phys. Chem. 73, 3922(1969).
    [33] S. Passerini and T. Mckrell, J. Nanofluids 1, 78(2012).
    [34] J. Z. Li and P. K. Dasgupta, Rev. Sci. Instrum. 71, 2283(2000).
    [35] X. W. Hu, Z. Sheng, B. L. Gao, Z. N. Shi, C. S. Huang, and Z. W. Wang, Metall. Anal. 34, 32(2014).
    [36] F. L. Whiting, G. Mamantov, and J. P. Young, J. Inorg. Nucl. Chem. 34, 2475(1972).
    [37] P. J. Bruna and F. Grein, Mol. Phys. 97, 321(1999).
    [38] G. D. Zhou, Inorganic Structural Chemistry, Beijing: Science Press, (1982).
    [39] X. L. Lv, Chemistry of Inorganic Hyperoxide, Beijing: Science Press, (1987).
    [40] H. R. Zeller and W. Kanzig, Helv. Phys. Acta 40, 845(1967).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1414) PDF downloads(670) Cited by()

Proportional views
Related

Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy

doi: 10.1063/1674-0068/30/cjcp1703046

Abstract: On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O22- and O2- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UVVis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NaNO3 are also obtained and compared with that of HTS.

Shu-ting Liu, Tao Su, Peng Zhang, Ze-jie Fei, Hong-tao Liu. Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 372-378. doi: 10.1063/1674-0068/30/cjcp1703046
Citation: Shu-ting Liu, Tao Su, Peng Zhang, Ze-jie Fei, Hong-tao Liu. Identification of Superoxide O2- during Thermal Decomposition of Molten KNO3-NaNO2-NaNO3 Salt by Electron Paramagnetic Resonance and UV-Vis Absorption Spectroscopy[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 372-378. doi: 10.1063/1674-0068/30/cjcp1703046
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return