Yu-jie Zhao, You-sheng Zhan, Li Li, Xin Li, Xiang-yu Lian, Pei Huang, Liu-si Sheng, Jun Chen. Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 303-311. doi: 10.1063/1674-0068/30/cjcp1703044
Citation: Yu-jie Zhao, You-sheng Zhan, Li Li, Xin Li, Xiang-yu Lian, Pei Huang, Liu-si Sheng, Jun Chen. Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 303-311. doi: 10.1063/1674-0068/30/cjcp1703044

Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene

doi: 10.1063/1674-0068/30/cjcp1703044
  • Received Date: 2017-03-20
  • Rev Recd Date: 2017-03-27
  • The photoionization and dissociation photoionization of toluene have been studied using quantum chemistry methods.The geometries and frequencies of the reactants,transition states and products have been performed at B3LYP/6-311++G (d,p) level,and single-point energy calculations for all the stationary points were carried out at DFT calculations of the optimized structures with the G3B3 level.The ionization energies of toluene and the appearance energies for major fragment ions,C7H7+,C6H5+,C5H6+,C5H5+,are determined to be 8.90,11.15 or 11.03,12.72,13.69,16.28 eV,respectively,which are all in good agreement with published experimental data.With the help of available published experimental data and theoretical results,four dissociative photoionization channels have been proposed:C7H7++H,C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.Transition structures and intermediates for those isomerization processes are determined in this work.Especially,the structures of C5H6+ and C5H5+ produced by dissociative photoionization of toluene have been defined as chain structure in this work with theoretical calculations.
  • 加载中
  • [1] Y. J. Zhang, Y. J. Mu, J. F. Liu, and A. Mellouki, J. Environ. Sci. 24, 124(2012).
    [2] H. J. Avens, K. M. Unice, J. Sahmel, S. A. Gross, J. J. Keenan, and D. J. Paustenbach, Environ. Sci. Technol. 45, 7372(2011).
    [3] S. Vardoulakis, E. Solazzo, and J. Lumbreras, Atmos. Environ. 45, 5069(2011)
    [4] L. Fishbein, Sci. Total Environ. 40, 189(1984).
    [5] L. Fishbein, Sci. Total Environ. 43, 165(1985).
    [6] V. Cocheo, P. Sacco, C. Boaretto, E. D. Saeger, P. P Ballesta, H. Skov, E. Goelen, N. Gonzalez, and A. B. Caracena, Nature 404, 141(2000).
    [7] E. Borras and L. A. Tortajada-Genaro, Int. J. Environ. Anal. Chem. 92, 110(2012).
    [8] E. Durmusoglu, F. Taspinar, and A. Karademir, J. Hazard. Mater. 176, 870(2010).
    [9] Y. Zhou, H. F. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. X. Wang, and R. M. Kamens, Atmos. Environ. 45, 3382(2011).
    [10] R. G. Mcloughlin, J. D. Morrison, and J. C. Traeger, Org. Mass Spectrom. 14, 104(1979).
    [11] J. C. Traeger and R. G. Mcloughlin, Int. J. Mass Spectrom. Ion Phys. 27, 319(1978).
    [12] C. Lifshitz, Y. Gotkis, A. Ioffe, J. Laskin, and S. Shaik, Int. J. Mass Spectr. Ion Proc. 125, 196(1993).
    [13] C. Lifshitz, Y. Gotkis, J. Laskin, A. Ioffe, and S. Shaik, J. Phys. Chem. 97, 12291(1993).
    [14] D. A. Shaw, D. M. P. Holland, M. A. MacDonald, M. A. Hayes, L. G. Shpinkova, E. E. Rennie, C. A. F. Johnson, J. E. Parker, and W. von Niessen, Chem. Phys. 230, 97(1998).
    [15] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764(1998)
    [16] L. Tao, Master Thesis, Hefei:Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China (2010).
    [17] M. Schwell, F. Dulieu, C. Gée, H. W. Jochims, J. L. Chotin, H. Baumgärtel, and S. Leach, Chem. Phys. 260, 261(2000).
    [18] C. J. Chul, J. Phys. Chem. A 110, 7655(2006).
    [19] J. R. Majer and C. R. Patrick, J. Chem. Soc. Faraday Trans. 58, 17(1962).
    [20] K. R. Jennings and J. H. Futrell, J. Chem. Phys. 44, 4315(1966).
    [21] P. N. Rylander, S. Meyerson, and H. M. Grubb, J. Am. Chem. Soc. 79, 842(2002).
    [22] C. Q. Jiao and S. F. Adams, Chem. Phys. Lett. 573, 24(2013).
    [23] R. Bombach, J. Dannacher, and J. P. Stadelmann, J. Am. Chem. Soc. 105, 4205(2002).
    [24] R. Bombach, J. Dannacher, and J. P. Stadelmann, Chem. Phys. Lett. 95, 259(1983).
    [25] R. Flammang, P. Meyrant, A. Maquestiau, E. E. Kingston, and J. H. Beynon, Org. Mass Spectrom. 20, 253(1985).
    [26] Y. Li, M. Cao, J. Chen, Y. Song, X. Shan, Y. Zhao, F. Liu, Z. Wang, and L. Sheng, J. Mol. Struct. 1068, 130(2014).
    [27] S. Meyerson and P. N. Rylander, J. Chem. Phys. 27, 901(1957).
    [28] J. L. Occolowitz and G. L. White, Aust. J. Chem. 21, 997(1968).
    [29] Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Li, Z. Y. Wang, and L. S. Sheng, J. Mol. Struct. 1020, 105(2012)
    [30] S. Tajima and T. Tsuchiya, Bull. Chem. Soc. Jpn. 46, 3291(1973).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(998) PDF downloads(772) Cited by()

Proportional views
Related

Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene

doi: 10.1063/1674-0068/30/cjcp1703044

Abstract: The photoionization and dissociation photoionization of toluene have been studied using quantum chemistry methods.The geometries and frequencies of the reactants,transition states and products have been performed at B3LYP/6-311++G (d,p) level,and single-point energy calculations for all the stationary points were carried out at DFT calculations of the optimized structures with the G3B3 level.The ionization energies of toluene and the appearance energies for major fragment ions,C7H7+,C6H5+,C5H6+,C5H5+,are determined to be 8.90,11.15 or 11.03,12.72,13.69,16.28 eV,respectively,which are all in good agreement with published experimental data.With the help of available published experimental data and theoretical results,four dissociative photoionization channels have been proposed:C7H7++H,C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.Transition structures and intermediates for those isomerization processes are determined in this work.Especially,the structures of C5H6+ and C5H5+ produced by dissociative photoionization of toluene have been defined as chain structure in this work with theoretical calculations.

Yu-jie Zhao, You-sheng Zhan, Li Li, Xin Li, Xiang-yu Lian, Pei Huang, Liu-si Sheng, Jun Chen. Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 303-311. doi: 10.1063/1674-0068/30/cjcp1703044
Citation: Yu-jie Zhao, You-sheng Zhan, Li Li, Xin Li, Xiang-yu Lian, Pei Huang, Liu-si Sheng, Jun Chen. Theoretical Investigation on Photoionization and Dissociative Photoionization of Toluene[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 303-311. doi: 10.1063/1674-0068/30/cjcp1703044
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return