Feng Jin, Ming-hui Fan, Qi-fang Jia, Quan-xin Li. Synthesis of Cumene from Lignin by Catalytic Transformation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 348-356. doi: 10.1063/1674-0068/30/cjcp1703038
Citation: Feng Jin, Ming-hui Fan, Qi-fang Jia, Quan-xin Li. Synthesis of Cumene from Lignin by Catalytic Transformation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 348-356. doi: 10.1063/1674-0068/30/cjcp1703038

Synthesis of Cumene from Lignin by Catalytic Transformation

doi: 10.1063/1674-0068/30/cjcp1703038
  • Received Date: 2017-03-17
  • Rev Recd Date: 2017-04-10
  • Cumene is an important intermediate and chemical in chemical industry.In this work,directional preparation of cumene using lignin was achieved by a three-step cascade process.The mixture aromatics were first produced by the catalytic pyrolysis of lignin at 450℃ over 1% Zn/HZSM-5 catalyst,monocyclic aromatics with the selectivity of 85.7 wt% were obtained.Then,the catalytic dealkylation of heavier aromatics resulted in benzene-rich aromatics with 93.6 wt% benzene at 600℃ over Hβ catalyst.Finally,the cumene synthesis was performed by the aromatic alkylation,giving cumene selectivity of 91.6 C-mol% using the[bmim]Cl-2AlCl13 ionic liquid at room temperature for 15 min.Besides,adding a small amount of methanol to the feed can efficiently suppress the coke yield and enhance the aromatics yield.The proposed transformation potentially provides a useful route for production of cumene using renewable lignin.
  • 加载中
  • [1] C. Xu, R. A. D. Arancon, J. Labidi, and R. Luque, Chem. Soc. Rev. 43, 7485(2014).
    [2] Q. Yao, Z. Tang, J. H. Guo, Y. Zhang, and Q. X. Guo, Chin. J Chem. Phys. 28, 209(2015).
    [3] L. Zhang, R. Liu, R. Yin, and Y. Mei, Renew. Sustain. Energy Rev. 24, 66(2013).
    [4] Q. Y. Wu, L. L. Ma, J. X. Long, R. Y. Shu, Q. Zhang, T. J. Wang, and Y. Xu, Chin. J. Chem. Phys. 29, 474(2016).
    [5] P. Huang and L. F. Yan, Chin. J. Chem. Phys. 29, 742(2016).
    [6] Y. Zhao, L. Deng, B. Liao, Y. Fu, and Q. X. Guo, Energy Fuels 24, 5735(2010).
    [7] J. Chen, C. Liu, and S. B. Wu, BioResources 11, 663(2015).
    [8] W. Wei, S. Wu, and S. Xu, J. Chem. Technol. Biotechnol. 92, 580(2017).
    [9] L. P. Xiao, Z. J. Shi, F. Xu, and R. C. Sun, Bioresour. Technol. 118, 619(2012).
    [10] L. Xu, Y. Zhang, and Y. Fu, Energy Technol. 4, 1(2016).
    [11] B. Zhang, Z. P Zhong, X. B. Wang, K. Ding, and Z. W. Song, Fuel Process Technol. 138, 430(2015).
    [12] C. Li, X. Zhao, A. Wang, G. W. Huber, and T. Zhang, Chem. Rev. 115, 11559(2015).
    [13] S. Adhikari, V. Srinivasan, and O. Fasina, Energy Fuels 28, 4532(2014).
    [14] S. Kang, X. Li, J. Fan, and J. Chang, Renew. Sus. Energy Rev. 27, 546(2013).
    [15] W. Y. Xu, S. J. Miller, P. K. Agrawal, and C. W. Jones, ChemSusChem 5, 667(2012).
    [16] C. Rutten, A. Ramırez, and J. Posada Duque, J. Chem. Technol. Biotechnol. 92, 257(2016).
    [17] Y. Zou, H. Jiang, Y. Liu, H. Gao, W. Xing, and R. Chen, Sep. Purif. Technol. 170, 49(2016).
    [18] J. Zhai, Y. Liu, L. Li, Y. Zhu, W. Zhong, and L. Sun, Chem. Eng. Res. Des. 102, 138(2015).
    [19] R. Navarro, S. Lopez-Pedrajas, D. Luna, J. M. Marinas, and F. M. Bautista, Appl. Catal. A 474, 272(2014).
    [20] T. F. Degnan, C. M. Smith, and C. R. Venkat, Appl. Catal. A 221, 283(2001).
    [21] M. P. Bailey, Chem. Eng. 121, 79(2014).
    [22] V. V. Bokade and U. K. Kharul, Chem. Eng. J. 147, 97(2009).
    [23] O. V. Shutkina, O. A. Ponomareva, and Ⅱ. Ivanova, Catal. Ind. 7, 282(2015).
    [24] H. R. Norouzi, M. A. Hasani, B. Haddadi-Sisakht, and N. Mostoufi, Chem. Eng. Commun. 201, 1270(2014).
    [25] C. Perego and P. Ingallina, Catal. Today 73, 3(2002).
    [26] C. Dai, Z. Lei, J. Zhang, Y. Li, and B. Chen, Chem. Eng. Sci. 100, 342(2013).
    [27] T. Odedairo and S. Al-Khattaf, Catal. Today 204, 73(2013).
    [28] P. W. Jiang, X. P. Wu, L. J. Zhu, F. Jin, J. X. Liu, T. Y. Xia, T. J. Wang, and Q. X. Li, Energ. Convers. Manage. 120, 338(2016).
    [29] F. Gong, Z. Yang, C. Hong, W. Huang, S. Ning, Z. Zhang, and Q. Li, Bioresour. Technol. 102, 9247(2011).
    [30] M. H. Fan, S. M. Deng, T. J. Wang, and Q. X. Li, Chin. J. Chemi. Phys. 27, 221(2014).
    [31] J. C. Wang, P. Y. Bi, Y. J. Zhang, H. Xue, P. W. Jiang, X. P. Wu, J. X. Liu, T. J. Wang, and Q. X. Li, Energy 86, 488(2015).
    [32] P. S. Rezaei, H. Shafaghat, and W. M. A. W. Daud, Appl. Catal. A 469, 490(2014).
    [33] G. Q. Zhang, T. Bai, T. F. Chen, W. T. Fan, and X. Zhang, Ind. Eng. Chem. Res. 53, 14932(2014).
    [34] G. Caeiro, R. H. Carvalho, X. Wang, M. A. N. D. A. Lemos, F. Lemos, M. Guisnet, and F. R. Ribeiro, J. Mol. Catal. A 255, 131(2006).
    [35] Y. Ono, Catal. Rev. 34, 179(1992).
    [36] N. Rahimi and R. Karimzadeh, J. Anal. Appl. Pyrolysiss 115, 242(2015).
    [37] Z. Zhao, W. Qiao, X. Wang, G. Wang, Z. Li, and L. Cheng, Appl. Catal. A 290, 133(2005).
    [38] T. F. Degnan, C. M. Smith, and C. R. Venkat, Appl. Catal. A 221, 283(2001).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(828) PDF downloads(546) Cited by()

Proportional views
Related

Synthesis of Cumene from Lignin by Catalytic Transformation

doi: 10.1063/1674-0068/30/cjcp1703038

Abstract: Cumene is an important intermediate and chemical in chemical industry.In this work,directional preparation of cumene using lignin was achieved by a three-step cascade process.The mixture aromatics were first produced by the catalytic pyrolysis of lignin at 450℃ over 1% Zn/HZSM-5 catalyst,monocyclic aromatics with the selectivity of 85.7 wt% were obtained.Then,the catalytic dealkylation of heavier aromatics resulted in benzene-rich aromatics with 93.6 wt% benzene at 600℃ over Hβ catalyst.Finally,the cumene synthesis was performed by the aromatic alkylation,giving cumene selectivity of 91.6 C-mol% using the[bmim]Cl-2AlCl13 ionic liquid at room temperature for 15 min.Besides,adding a small amount of methanol to the feed can efficiently suppress the coke yield and enhance the aromatics yield.The proposed transformation potentially provides a useful route for production of cumene using renewable lignin.

Feng Jin, Ming-hui Fan, Qi-fang Jia, Quan-xin Li. Synthesis of Cumene from Lignin by Catalytic Transformation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 348-356. doi: 10.1063/1674-0068/30/cjcp1703038
Citation: Feng Jin, Ming-hui Fan, Qi-fang Jia, Quan-xin Li. Synthesis of Cumene from Lignin by Catalytic Transformation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 348-356. doi: 10.1063/1674-0068/30/cjcp1703038
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return