Tian-yu Li, Jia-biao Zou, Yan Zhang, Chuang-chuang Cao, Wei Li, Wen-hao Yuan. Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 287-294. doi: 10.1063/1674-0068/30/cjcp1703031
Citation: Tian-yu Li, Jia-biao Zou, Yan Zhang, Chuang-chuang Cao, Wei Li, Wen-hao Yuan. Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 287-294. doi: 10.1063/1674-0068/30/cjcp1703031

Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation

doi: 10.1063/1674-0068/30/cjcp1703031
  • Received Date: 2017-03-12
  • Rev Recd Date: 2017-05-10
  • A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation.A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments.The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments,as well as the synergistic effect between 1,3-butadiene and propyne on the formation of a series of aromatic hydrocarbons.Based on the rate of production and sensitivity analyses,key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved.The synergistic effect results from the interaction between 1,3-butadiene and propyne.The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons.Besides,the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously,which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.
  • 加载中
  • [1] C. S. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 32, 247(2006).
    [2] F. Qi, R. Yang, B. Yang, C. Q. Huang, L. X. Wei, J. Wang, L. S. Sheng, and Y. W. Zhang, Rev. Sci. Instrum. 77, 084101(2006).
    [3] B. Yang, Y. Y. Li, L. X. Wei, C. Q. Huang, J. Wang, Z. Y. Tian, R. Yang, L. S. Sheng, Y. W. Zhang, and F. Qi, Proc. Combust. Inst. 31, 555(2007).
    [4] Y. Y. Li, L. D. Zhang, Z. Y. Tian, T. Yuan, J. Wang, B. Yang, and F. Qi, Energy Fuels 23, 1473(2009).
    [5] Y. Y. Li, L. D. Zhang, Z. Y. Tian, T. Yuan, K. W. Zhang, B. Yang, and F. Qi, Proc. Combust. Inst. 32, 1293(2009).
    [6] H. Richter and J. B. Howard, Phys. Chem. Chem. Phys. 4, 2038(2002).
    [7] L. D. Zhang, J. H. Cai, T. C. Zhang, and F. Qi, Combust. Flame 157, 1686(2010).
    [8] Y. Y. Li, J. H. Cai, L. D. Zhang, T. Yuan, K. W. Zhang, and F. Qi, Proc. Combust. Inst. 33, 593(2011).
    [9] Y. Y. Li, L. D. Zhang, Z. D. Wang, L. L. Ye, J. H. Cai, Z. J. Cheng, and F. Qi, Proc. Combust. Inst. 34, 1739(2013).
    [10] W. H. Yuan, Y. Y. Li, P. Dagaut, J. Z. Yang, and F. Qi, Combust. Flame 162, 3(2015).
    [11] J. F. Roesler, S. Martinot, C. S. McEnally, L. D. Pfefferle, J. L. Delfau, and C. Vovelle, Combust. Flame 134, 249(2003).
    [12] S. Trottier, H. Guo, G. J. Smallwood, and M. R. Johnson, Proc. Combust. Flame 31, 611(2007).
    [13] J. Y. Hwang, S. H. Chung, and W. Lee, Proc. Combust. Flame 27, 1531(1998).
    [14] J. Y. Hwang, W. Lee, H. G. Kang, and S. H. Chung, Combust. Flame 114, 370(1998).
    [15] N. B. Poddar, S. Thomas, and M. J. Wornat, Proc. Combust. Inst. 34, 1775(2013).
    [16] B. C. Choi, S. K. Choi, and S. H. Chung, Proc. Combust. Inst. 33, 609(2011).
    [17] S. Thomas and M. J. Wornat, Proc. Combust. Inst. 32, 615(2009).
    [18] N. B. Poddar, S. Thomas, and M. J. Wornat, Proc. Combust. Inst. 33, 541(2011).
    [19] H. F. Jin, A. Frassoldati, Y. Z. Wang, X. Y. Zhang, M. R. Zeng, Y. Y. Li, F. Qi, A. Cuoci, and T. Faravelli, Combust. Flame 162, 1692(2015).
    [20] W. H. Yuan, Y. Y. Li, P. Dagaut, J. Z. Yang, and F. Qi, Combust. Flame 162, 22(2015).
    [21] H. F. Jin, J. H. Cai, G. Q. Wang, Y. Z. Wang, Y. Y. Li, J. Z. Yang, Z. J. Cheng, W. H. Yuan, and F. Qi, Combust. Flame 169, 154(2016).
    [22] W. H. Yuan, Y. Y. Li, G. Pengloan, C. Togbé, P. Dagaut, and F. Qi, Combust. Flame 166, 255(2016).
    [23] C. Chanmugathas and J. Heicklen, Int. J. Chem. Kinet. 18, 701(1986).
    [24] J. A. Miller and S. J. Klippenstein, J. Phys. Chem. A 107, 7783(2003).
    [25] A. D'Anna, A. D'Alessio, and J. Kent, Combust. Sci. Technol. 174, 279(2002).
    [26] S. J. Klippenstein, L. B. Harding, and Y. Georgievskii, Proc. Combust. Inst. 31, 221(2007).
    [27] L. Vereecken and J. Peeters, Phys. Chem. Chem. Phys. 5, 2807(2003).
    [28] C. Cavallotti, D. Polino, A. Frassoldati, and E. Ranzi, J. Phys. Chem. A 116, 3313(2012).
    [29] H. Wang and M. Frenklach, Combust. Flame 96, 163(1994).
    [30] H. Wang and M. Frenklach, Combust. Flame 110, 173(1997).
    [31] G. Blanquart, P. Pepiot-Desjardins, and H. Pitsch, Combust. Flame 156, 588(2009).
    [32] A. Matsugi and A. Miyoshi, Int. J. Chem. Kinet. 44, 206(2012).
    [33] E. Goos, A. Burcat, and B. Ruscic, Ideal Gas Thermochemical Database with Updates from Active Thermochemical Tables, ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodunamics (2005).
    [34] J. A. Miller, J. P. Senosiain, S. J. Klippenstein, and Y. Georgievskii, J. Phys. Chem. A 112, 9429(2008).
    [35] Reaction Design, Chemkin-Pro 15092, San Diego (2009).
    [36] Y. Hidaka, T. Nakamura, A. Miyauchi, T. Shiraishi, and H. Kawano, Int. J. Chem. Kinet. 21, 643(1989).
    [37] Y. Hidaka, T. Higashihara, N. Ninomiya, H. Masaoka, T. Nakamura, and H. Kawano, Int. J. Chem. Kinet. 28, 137(1996).
    [38] B. Yang, P. Osswald, Y. Y. Li, J. Wang, L. X. Wei, Z. Y. Tian, F. Qi, and K. Kohse-Höinghaus, Combust. Flame 148, 198(2007).
    [39] P. Osswald, H. Gldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, and F. Qi, Combust. Flame 158, 2(2011).
    [40] F. Qi, Proc. Combust. Inst. 34, 33(2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1049) PDF downloads(649) Cited by()

Proportional views
Related

Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation

doi: 10.1063/1674-0068/30/cjcp1703031

Abstract: A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation.A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments.The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments,as well as the synergistic effect between 1,3-butadiene and propyne on the formation of a series of aromatic hydrocarbons.Based on the rate of production and sensitivity analyses,key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved.The synergistic effect results from the interaction between 1,3-butadiene and propyne.The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons.Besides,the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously,which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.

Tian-yu Li, Jia-biao Zou, Yan Zhang, Chuang-chuang Cao, Wei Li, Wen-hao Yuan. Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 287-294. doi: 10.1063/1674-0068/30/cjcp1703031
Citation: Tian-yu Li, Jia-biao Zou, Yan Zhang, Chuang-chuang Cao, Wei Li, Wen-hao Yuan. Numerical Investigation on 1,3-Butadiene/Propyne Co-pyrolysis and Insight into Synergistic Effect on Aromatic Hydrocarbon Formation[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 287-294. doi: 10.1063/1674-0068/30/cjcp1703031
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return