Da-wei Guan, Rui-min Wang, Xian-chi Jin, Dong-xu Dai, Zhi-bo Ma, Hong-jun Fan, Xue-ming Yang. Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 253-258. doi: 10.1063/1674-0068/30/cjcp1703030
Citation: Da-wei Guan, Rui-min Wang, Xian-chi Jin, Dong-xu Dai, Zhi-bo Ma, Hong-jun Fan, Xue-ming Yang. Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 253-258. doi: 10.1063/1674-0068/30/cjcp1703030

Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups

doi: 10.1063/1674-0068/30/cjcp1703030
  • Received Date: 2017-03-12
  • Rev Recd Date: 2017-03-25
  • As the photo-dissociation product of methanol on the TiO2(110) surface,the diffusion and desorption processes of formaldehyde (HCHO) were investigated by using scanning tunneling microscope (STM) and density functional theory (DFT).The molecular-level images revealed the HCHO molecules could diffuse and desorb on the surface at 80 K under UV laser irradiation.The diffusion was found to be mediated by hydrogen adatoms nearby,which were produced from photodissociation of methanol.Diffusion of HCHO was significantly decreased when there was only one H adatom near the HCHO molecule.Furthermore,single HCHO molecule adsorbed on the bare TiO2(110) surface was quite stable,little photo-desorption was observed during laser irradiation.The mechanism of hydroxyl groups assisted diffusion of formaldehyde was also investigated using theoretical calculations.
  • 加载中
  • [1] S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Törnqvist, and J. K. Nørskov, Phys. Rev. Lett. 83, 1814(1999).
    [2] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev. 95, 735(1995).
    [3] T. Zambelli, J. Wintterlin, J. Trost, and G. Ertl, Science 273, 1688(1996).
    [4] C. N. Satterfield, and T. K. Sherwood, The Role of Diffusion in Catalysis, Massachusetts, Palo Alto, London:Addison-Wesley Publishing Company, Inc., (1975).
    [5] J. M. Thomas, W. J. Thomas, J. R. Anderson, and M. Noudart, Principles and Practice of Heterogeneous Catalysis, Weinheim:VCH Verlagsgesellschaft, (1997).
    [6] A. Fujishima and K. Honda, Nature 238, 37(1972).
    [7] S. Sato and J. M. White, Chem. Phys. Lett. 72, 83(1980).
    [8] A. Fujishima, X. T. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515(2008).
    [9] A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253(2009).
    [10] K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 2655(2010).
    [11] F. E. Osterloh, Chem. Mater. 20, 35(2008).
    [12] W. J. Youngblood, S. H. A. Lee, K. Maeda, and T. E. Mallouk, Acc. Chem. Res. 42, 1966(2009).
    [13] U. Diebold, J. F. Anderson, K. O. Ng, and D. Vanderbilt, Phys. Rev. Lett. 77, 1322(1996).
    [14] S. Wendt, P. T. Sprunger, E. Lira, G. K. H. Madsen, Z. S. Li, J. Ø. Hansen, J. Matthiesen, A. BlekingeRasmussen, E. Lægsgaard, B. Hammer, and F. Besenbacher, Science 320, 1755(2008).
    [15] B. Hammer, S. Wendt, and F. Besenbacher, Top. Catal. 53, 423(2010).
    [16] J. O. Hansen, P. Huo, U. Martinez, E. Lira, Y. Y. Wei, R. Streber, E. Laegsgaard, B. Hammer, S. Wendt, and F. Besenbacher, Phys. Rev. Lett. 107, 136102(2011).
    [17] S. C. Li, L. N. Chu, X. Q. Gong, and U. Diebold, Science 328, 882(2010).
    [18] Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, and Z. Dohnálek, J. Phys. Chem. B 110, 21840(2006).
    [19] Z. R. Zhang, O. Bondarchuk, J. M. White, B. D. Kay, and Z. Dohnálek, J. Am. Chem. Soc. 128, 4198(2006).
    [20] Y. Zhao, Z. Wang, X. F. Cui, T. Huang, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 131, 7958(2009).
    [21] R. P. Galhenage, H. Yan, S. A. Tenney, N. Park, G. Henkelman, P. Albrecht, D. R. Mullins, and D. A. Chen, J. Phys. Chem. C 117, 7191(2013).
    [22] D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Lægsgaard, B. Hammer, and F. Besenbacher, Science 315, 1692(2007).
    [23] J. B. Park, S. F. Conner, and D. A. Chen, J. Phys. Chem. C 112, 5490(2008).
    [24] X. Tong, L. Benz, P. Kemper, H. Metiu, M. T. Bowers, and S. K. Buratto, J. Am. Chem. Soc. 127, 13516(2005).
    [25] E. Wahlström, N. Lopez, R. Schaub, P. Thostrup, A. Rønnau, C. Africh, E. Lægsgaard, J. K. Nørskov, and F. Besenbacher, Phys. Rev. Lett. 90, 026101(2003).
    [26] S. J. Tan, H. Feng, Y. F. Ji, Y. Wang, J. Zhao, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, J. G. Hou, J. Am. Chem. Soc. 134, 9978(2012).
    [27] F. Yang, M. S. Chen, and D. W. Goodman, J. Phys. Chem. C 113, 254(2009).
    [28] C. Y. Zhou, Z. F. Ren, S. J. Tan, Z. B. Ma, X. C. Mao, D. X. Dai, H. J. Fan, X. M. Yang, J. LaRue, R. Cooper, A. M. Wodtke, Z. Wang, Z. Y. Li, B. Wang, J. L. Yang, and J. G. Hou, Chem. Sci. 1, 575(2010).
    [29] P. P. Huo, J. Ø. Hansen, U. Martinez, E. Lira, R. Streber, Y. Y. Wei, E. Lægsgaard, B. Hammer, S. Wendt, and F. Besenbacher, J. Phys. Chem. Lett. 3, 283(2012).
    [30] T. Chen, Z. H. Feng, G. P. Wu, J. Y. Shi, G. J. Ma, P. L. Ying, and C. Li, J. Phys. Chem. C 111, 8005(2007).
    [31] Q. Guo, C. B. Xu, Z. F. Ren, W. S. Yang, Z. B. Ma, D. X. Dai, H. J. Fan, T. K. Minton, and X. M. Yang, J. Am. Chem. Soc. 134, 13366(2012).
    [32] Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, and M. Tachiya, J. Am. Chem. Soc. 128, 416(2006).
    [33] N. L. Wu, M. S. Lee, Z. J. Pon, and J. Z. Hsu, J. Photochem. Photobiol. A Chem. 163, 277(2004).
    [34] C. B. Xu, W. S. Yang, Q. Guo, D. X. Dai, M. D. Chen, and X. M. Yang, J. Am. Chem. Soc. 135, 10206(2013).
    [35] T. Kawai and T. Sakata, J. Chem. Soc. Chem. Commun. 694(1980).
    [36] C. Y. Wang, J. Rabani, D. W. Bahnemann, and J. K. Dohrmann, J. Photochem. Photobiol. A Chem. 148, 169(2002).
    [37] A. Yamakata, T. A. Ishibashi, and H. Onishi, J. Phys. Chem. B 106, 9122(2002).
    [38] Q. Guo, C. B. Xu, W. S. Yang, Z. F. Ren, Z. B. Ma, D. X. Dai, T. K. Minton, and X. M. Yang, J. Phys. Chem. C 117, 5293(2013).
    [39] K. R. Phillips, S. C. Jensen, M. Baron, S. C. Li, and C. M. Friend, J. Am. Chem. Soc. 135, 574(2013).
    [40] T. Cremer, S. C. Jensen, and C. M. Friend, J. Phys. Chem. C 118, 29242(2014).
    [41] G. Lu, A. Linsebigler, and J. T. Jr. Yates, J. Phys. Chem. 98, 11733(1994).
    [42] X. C. Mao, D. Wei, Z. Q. Wang, X. C. Jin, Q. Q. Hao, Z. F. Ren, D. X. Dai, Z. B. Ma, C. Y. Zhou, and X. M. Yang, J. Phys. Chem. C 119, 1170(2015).
    [43] Q. Yuan, Z. F. Wu, Y. K. Jin, F. Xiong, and W. X. Huang, J. Phys. Chem. C 118, 20420(2014).
    [44] D. Wei, X. C. Jin, C. Q. Huang, D. X. Dai, Z. B. Ma, W. X. Li, and X. M. Yang, J. Phys. Chem. C 119, 17748(2015).
    [45] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169(1996).
    [46] G. Kresse and J. Hafner, Phys. Rev. B 48, 13115(1993).
    [47] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865(1996).
    [48] P. E. Blöchl, Phys. Rev. B 50, 17953(1994).
    [49] R. M. Wang and H. J. Fan, Sci. China Chem. 58, 614(2015).
    [50] J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102(2005).
    [51] G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978(2000).
    [52] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901(2000).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1041) PDF downloads(600) Cited by()

Proportional views
Related

Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups

doi: 10.1063/1674-0068/30/cjcp1703030

Abstract: As the photo-dissociation product of methanol on the TiO2(110) surface,the diffusion and desorption processes of formaldehyde (HCHO) were investigated by using scanning tunneling microscope (STM) and density functional theory (DFT).The molecular-level images revealed the HCHO molecules could diffuse and desorb on the surface at 80 K under UV laser irradiation.The diffusion was found to be mediated by hydrogen adatoms nearby,which were produced from photodissociation of methanol.Diffusion of HCHO was significantly decreased when there was only one H adatom near the HCHO molecule.Furthermore,single HCHO molecule adsorbed on the bare TiO2(110) surface was quite stable,little photo-desorption was observed during laser irradiation.The mechanism of hydroxyl groups assisted diffusion of formaldehyde was also investigated using theoretical calculations.

Da-wei Guan, Rui-min Wang, Xian-chi Jin, Dong-xu Dai, Zhi-bo Ma, Hong-jun Fan, Xue-ming Yang. Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 253-258. doi: 10.1063/1674-0068/30/cjcp1703030
Citation: Da-wei Guan, Rui-min Wang, Xian-chi Jin, Dong-xu Dai, Zhi-bo Ma, Hong-jun Fan, Xue-ming Yang. Diffusion of Formaldehyde on Rutile TiO2(110) Assisted by Surface Hydroxyl Groups[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 253-258. doi: 10.1063/1674-0068/30/cjcp1703030
Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return