Guo-qing Xu, Chang-chun Hao, Lei Zhang, Shi Chen, Run-guang Sun. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 595-602. doi: 10.1063/1674-0068/30/cjcp1703029
Citation: Guo-qing Xu, Chang-chun Hao, Lei Zhang, Shi Chen, Run-guang Sun. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 595-602. doi: 10.1063/1674-0068/30/cjcp1703029

Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface

doi: 10.1063/1674-0068/30/cjcp1703029
  • Received Date: 2017-06-23
  • The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]>5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.
  • 加载中
  • [1] A. W. Smith, Biochim. Biophys. Acta 1818, 172 (2012).
    [2] W. Caetano, M. Ferreira, M. Tabak, M. I. M. Sanchez, O. N. Jr. Oliveira, P. Krüger, M. Schalke, and M. Lösche, Biophys. Chem. 91, 21 (2001).
    [3] C. C. Hao, R. G Sun, J. Zhang, Y. G. Chang, and C. L. Niu, Colloids Surf. B 69, 201 (2009).
    [4] É. Kiss, K. Dravetzky, K. Hill, E. Kutnyánszky, and A. Varga, J. Colloid Interface Sci. 325, 337 (2008).
    [5] H. J. Yun, Y. W. Choi, N. J. Kim, and D. W. Sohn, Bull. Korean Chem. Soc. 24, 377 (2003).
    [6] S. P. Deng and J. Y. Cai, J. Biomed. Eng. 25, 472 (2008).
    [7] P. Pedraz, F. J. Montes, R. L. Cerro, and M. E. Daz, Thin Solid Films 525, 121 (2012).
    [8] K. Maiti, S. C. Bhattacharya, S. P. Moulik, and A. K. Panda, Mater. Sci. Eng. C 33, 836 (2013).
    [9] J. S. Choi and N. Meghani, Colloids Surf. B 145, 653 (2016).
    [10] X. R. Li, D. J. Chen, G. K. Wang, and Y. Lu, J. Lumin. 156, 255 (2014).
    [11] E. L. Gelamo, C. H. T. P. Silva, H. Imasato, and M. Tabak, Biochim. Biophys. Acta 1594, 84 (2002).
    [12] G. W. Zhang, A. P. Wang, T. Jiang, and J. B. Guo, J. Mol. Struct. 891, 93 (2008).
    [13] D. Madhumitha, M. Jaganathan, A. Dhathathreyan, and R. Miller, Colloids Surf. B 146, 161 (2016).
    [14] M. Benkõ, N. Varga, D. Sebõk, G. Bohus, Á. Juhász, and I. Dékánya, Colloids Surf. B 130, 126 (2015).
    [15] B. Elsadek and F. Kratz, J. Control. Release 157, 4 (2012).
    [16] R. R. Harbottle, K. Nag, N. S. McIntyre, F. Possmayer, and N. O. Petersen, Langmuir 19, 3698 (2003).
    [17] A. Pavinatto, J. A. M. Delezuk, A. L. Souza, F. J. Pavinatto, D. Volpati, P. B. Miranda, S. P. Campana- Filhoa, and O. N. Jr. Oliveira, Colloids Surf. B 145, 201 (2016).
    [18] E. Marzban, S. H. Alavizadeh, M. Ghiadi, M. Khoshangosht, Z. Khashayarmanesh, A. Abbasi, and M. R. Jaafari, Colloids Surf. B 136, 885 (2015).
    [19] T. Tsunoda, T. Imura, M. Kadota, T. Yamazaki, H. Yamauchi, K. O. Kwon, S. Yokoyama, H. Sakai, and M. Abe, Colloids Surf. B 20, 155 (2001).
    [20] Y. Yokouchi, T. Tsunoda, T. Imura, H. Yamauchi, S. Yokoyama, H. Sakai, and M. Abe, Colloids Surf. B 20, 95 (2001).
    [21] N. F. Crawford and R. M. Leblanc, Adv. Colloid Interface Sci. 207, 131 (2014).
    [22] C. C. Hao, J. H. Li, W. N. Mu, L. Q. Zhu, J. X. Yang, H. W. Liu, B. Li, S. Chen, and R. G. Sun, Appl. Surf. Sci. 362, 121 (2016).
    [23] S. Kundu, H. Matsuoka, and H. Seto, Colloids Surf. B 93, 215 (2012).
    [24] S. Drotleff, U. Lungwitz, M. Breunig, A. Dennis, T. Blunk, J. Tessmar, and A. Göpferich, Eur. J. Pharm. Biopharm. 58, 385 (2004).
    [25] C. C. Hao, R. G. Sun, and J. Zhang, Colloids Surf. B 112, 441 (2013).
    [26] Y. Fan, S. H. Park, H. K. Shin, and Y. S. Kwon, Curr. Appl. Phys. 6, 728 (2006).
    [27] V. Rosilio, M. M. Boissonnade, J. Y. Zhang, L. Jiang, and A. Baszkin, Langmuir 13, 4669 (1997).
    [28] K. Meral, H. Y. Erbil, and Y. Onganer, Appl. Surf. Sci. 258, 1605 (2011).
    [29] K. Das and S. Kundu, Colloids Surf. A 492, 54 (2016).
    [30] N. C. de Souza, W. Caetano, R. Itri, C. A. Rodrigues, O. N. Jr. Oliveira, J. A. Giacometti, and M. Ferreira, J. Colloid Interface Sci. 297, 546 (2006).
    [31] W. Caetano, M. Ferreira, O. N. Jr. Oliveira, and R. Itri, Colloids Surf. B 38, 21 (2004).
    [32] P. J. Gomes, A. M. Gonçalves da Silva, P. A. Ribeiro, O. N. Jr. Oliveira, and M. Raposo, Mater. Sci. Eng. C 58, 576 (2016).
    [33] B. Krajewska, P. Wydro, and A. Kyzioł, Colloids Surf. A 434, 349 (2013).
    [34] D. Grigoriev, R. Krustev, R. Miller, and U. Pison, J. Phys. Chem. B 103, 1013 (1999).
    [35] M. Seifert, D. Breitenstein, U. Klenz, M. C. Meyer, and H. J. Galla, Biophys. J. 93, 1192 (2007).
    [36] F. Behroozi, Langmuir 12, 2289 (1996).
    [37] P. Toimil, G. Prieto, J. Jr. Miñones, J. M. Trillo, and F. Sarmiento, Colloids Surf. B 92, 64 (2012).
    [38] Z. W. Yu, J. Jin, and Y. Cao, Langmuir 18, 4530 (2002).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(884) PDF downloads(684) Cited by()

Proportional views
Related

Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface

doi: 10.1063/1674-0068/30/cjcp1703029

Abstract: The interaction between bovine serum albumin (BSA) and the anionic 1.2-dipalmitoyl-snglycero- 3-(phospho-rac-(1-glycerol)) (sodium salt) (DPPG) phospholipid at different subphase pH values was investigated at air-water interface through surface pressure measurements and atomic force microscopy (AFM) observation. By analyzing surface pressure-mean molecular area (π-A) isotherms, the limiting molecular area in the closed packing state-the concentration of BSA (Alim-[BSA]) curves, the compressibility coefficient-surface pressure (CS-1-π) curves and the difference value of mean molecular area-the concentration of BSA (ΔA-[BSA]) curves, we obtained that the mean molecular area of DPPG monolayer became much larger when the concentration of BSA in the subphase increased at pH=3 and 5. But the isotherms had no significant change at different amount of BSA at pH=10. In addition, the amount of BSA molecules adsorbed onto the lipid monolayer reached a threshold value when [BSA]>5×10-8 mol/L for all pHs. From the surface pressure-time (π-t) data, we obtained that desorption and adsorption processes occurred at pH=3, however, there was only desorption process occurring at pH=5 and 10. These results showed that the interaction mechanism between DPPG and BSA molecules was affected by the pH of subphase. BSA molecules were adsorbed onto the DPPG monolayers mainly through the hydrophobic interaction at pH=3 and 5, and the strength of hydrophobic interaction at pH=3 was stronger than the case of pH=5. At pH=10, a weaker hydrophobic interaction and a stronger electrostatic repulsion existed between DPPG and BSA molecules. AFM images revealed that the pH of subphase and [BSA] could affect the morphology features of the monolayers, which was consistent with these curves. The study provides an important experimental basis and theoretical support to understand the interaction between lipid and BSA at the air-water interface.

Guo-qing Xu, Chang-chun Hao, Lei Zhang, Shi Chen, Run-guang Sun. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 595-602. doi: 10.1063/1674-0068/30/cjcp1703029
Citation: Guo-qing Xu, Chang-chun Hao, Lei Zhang, Shi Chen, Run-guang Sun. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface[J]. Chinese Journal of Chemical Physics , 2017, 30(5): 595-602. doi: 10.1063/1674-0068/30/cjcp1703029
Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return