Zhao-yang Chen, Long-fa Duan, You-qun Chu, Jiang-feng Sheng, Wen-feng Lin, Chun-an Ma. Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 450-456. doi: 10.1063/1674-0068/30/cjcp1703026
Citation: Zhao-yang Chen, Long-fa Duan, You-qun Chu, Jiang-feng Sheng, Wen-feng Lin, Chun-an Ma. Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 450-456. doi: 10.1063/1674-0068/30/cjcp1703026

Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation

doi: 10.1063/1674-0068/30/cjcp1703026
  • Received Date: 2017-03-03
  • Rev Recd Date: 2017-06-10
  • The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing mechanism at 600℃ wherein species diffuse, thereby resulting in core-shell structure, and Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatinic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC particles and allows the motion of carbon around WC and Pt nanoparticles to be reserved, influencing the electrocatalytic performance and stability toward methanol oxidation.
  • 加载中
  • [1] M. Winter and R. J. Brodd, Chem. Rev. 104, 42(2004).
    [2] X. Yang, Q. D. Yang, J. Xu, and C. S. Lee, J. Mater. Chem. 22, 8057(2012).
    [3] K. Mikkelsen, B. Cassidy, N. Hofstetter, L. Bergquist, A. Taylor, and D. A. Rider, Chem. Mater. 26, 6928(2014).
    [4] N. Zhang, S. J. Guo, X. Zhu, J. Guo, and X. Q. Huang, Chem. Mater. 28, 4447(2016).
    [5] H. Zhang, M. S. Jin, and Y. N. Xia, Chem. Soc. Rev. 41, 8035(2012).
    [6] J. R. C. Salgado, F. Alcaide, G. Alvarez, L. Calvillo, and M. J. Lazaro, J. Power Sources 195, 4022(2010).
    [7] W. J. Zhou, Z. H. Zhou, S. Q. Song, W. Z. Li, G. Q. Sun, P. Tsiakaras, and Q. Xin, Appl. Catal. 46, 273(2003).
    [8] A. Chen and P. H. Hindle, Chem. Rev. 110, 3767(2010).
    [9] S. Bukola, B. Merzougui, A. Akinpelu, and M. Zeama, Electrochimica Acta 190, 1113(2016).
    [10] G. Singla, K. Singh, and O. P. Pandey, Int. J. Hydrogen Energy 40, 5628(2015).
    [11] Z. X. Yan, J. M. Xie, and P. K. Shen, J. Power Sources 286, 239(2015).
    [12] K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater. 21, 2233(2009).
    [13] S. Y. Zhang, N. P. Philipp, J. W. Joshua, S. Dai, M. J. Xu, G. W. George, C. Matteo, A. P. Frank, and X. Q. Pan, Nano Lett. 16, 4528(2016).
    [14] R. B. Levy and M. Boudart, Science 181, 547(1973).
    [15] J. G. Chen, Chem. Rev. 96, 1477(1996).
    [16] H. Chhina, S. Campbell, and O. Kesler, J. Power Sources 179, 50(2007).
    [17] R. H. Wang, C. G. Tian, L. Wang, B. L. Wang, H. B. Zhang, and H. G. Fu, Chem. Commun. 3104(2009).
    [18] G. S. Raman, J. H. Dong, and S. L. Jae, Electrochem. Commun. 9, 2576(2007).
    [19] J. S. Moon, Y. W. Lee, S. B. Han, and K. W. Park, Int. J. Hydrogen Energy 39, 7798(2014).
    [20] R. Ganesan and J. S. Lee, Angew. Chem. Int. Ed. 44, 6557(2005).
    [21] C. A. Ma, Z. Y. Chen, W. F. Lin, F. M. Zhao, and M. Q. Shi, Micropor. Mesopor. Mater 149, 76(2012).
    [22] Y. Wang, S. Song, V. Maragou, P. K. Shen, and P. Tsiakaras, Appl. Catal. B 89, 223(2009).
    [23] Y. Wang, S. Q. Song, P. K. Shen, C. X. Guo, and C. M. Li, J. Mater. Chem. 19, 6149(2009).
    [24] S. Shanmugam, D. S. Jacob, and A. Gedanken, J. Phys. Chem. B 109, 19056(2005).
    [25] V. G. Pol, S. V. Pol, and A. Gedanken, Adv. Mater. 23, 1179(2011).
    [26] V. G. Pol, S. V. Pol, and A. Gedanken, Adv. Mater. 18, 2023(2006).
    [27] F. P. Hu and P. K. Shen, J. Power Sources 173, 877(2007).
    [28] Z. Y. Chen, C. A. Ma, Y. Q. Chu, J. M. Jin, X. Lin, C. Hardacre, and W. F. Lin, Chem. Commun. 49, 11677(2013).
    [29] G. J. French and F. R. Sale, J. Mater. Sci. 16, 3427(1981).
    [30] Z. Y. Chen, M. Q. Shi, C. A. Ma, Y. Q. Chu, and A. J. Zhu, Powder Technol. 235, 467(2013).
    [31] J. Chen, B. Lim, E. P. Lee, and Y. Xia, Nano Today 4, 81(2009).
    [32] Y. J. Li, W. Gao, L. J. Ci, C. M. Wang, and P. M. Ajayan, Carbon 48, 1124(2010).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(879) PDF downloads(495) Cited by()

Proportional views
Related

Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation

doi: 10.1063/1674-0068/30/cjcp1703026

Abstract: The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing mechanism at 600℃ wherein species diffuse, thereby resulting in core-shell structure, and Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatinic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC particles and allows the motion of carbon around WC and Pt nanoparticles to be reserved, influencing the electrocatalytic performance and stability toward methanol oxidation.

Zhao-yang Chen, Long-fa Duan, You-qun Chu, Jiang-feng Sheng, Wen-feng Lin, Chun-an Ma. Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 450-456. doi: 10.1063/1674-0068/30/cjcp1703026
Citation: Zhao-yang Chen, Long-fa Duan, You-qun Chu, Jiang-feng Sheng, Wen-feng Lin, Chun-an Ma. Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 450-456. doi: 10.1063/1674-0068/30/cjcp1703026
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return