Bai-cheng Xi, Dong-hua Zhang, Jia-jun Wang, Wan-cheng Yu. Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 343-347. doi: 10.1063/1674-0068/30/cjcp1703024
Citation: Bai-cheng Xi, Dong-hua Zhang, Jia-jun Wang, Wan-cheng Yu. Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 343-347. doi: 10.1063/1674-0068/30/cjcp1703024

Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure

doi: 10.1063/1674-0068/30/cjcp1703024
  • Received Date: 2017-03-01
  • Rev Recd Date: 2017-04-17
  • Using 3D Langevin dynamics simulations,we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure.The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders.By contrast,the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders.Notably,the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44.We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.
  • 加载中
  • [1] J. Allemand, S. Cocco, N. Douarche, and G. Lia, Eur. Phys. J. E 19, 293(2006).
    [2] L. Lapidus, W. Eaton, and J. Hofrichter, Proc. Natl. Acad. Sci. USA 97, 7220(2000).
    [3] Y. Sheng, P. Hsu, J. Z. Y. Chen, and H. Tsao, Macromolecules 37, 9257(2004).
    [4] M. Sano, A. Kamino, J. Okamura, and S. Shinkai, Science 293, 1299(2001).
    [5] S. Jun, J. Bechhoefer, and B. Ha, Europhys. Lett. 64, 420(2003).
    [6] A. Dua and B. Cherayil, J. Chem. Phys. 116, 399(2002).
    [7] R. Afra and B. Todd, J. Chem. Phys. 138, 174908(2013).
    [8] J. Stample and I. Sokolov, J. Chem. Phys. 114, 5043(2001).
    [9] P. Bhattacharyya, R. Sharma, and B. Cherayil, J. Chem. Phys. 136, 234903(2012).
    [10] I. Sokolov, Phys. Rev. Lett. 90, 080601(2003).
    [11] T. Guérin, O. Bénichou, and R. Voituriez, Nat. Chem. 4, 568(2012).
    [12] A. Rey and J. Freire, Macromolecules 24, 4673(1991).
    [13] (a) B. Friedman and B. O'Shaughnessy, Phys. Rev. A 40, 5950(1989); (b) B. Friedman and B. O'Shaughnessy, Europhys. Lett. 23, 667(1993); (b) B. Friedman and B. O'Shaughnessy, Macromolecules 26, 4888(1993); (c) B. Friedman and B. O'Shaughnessy, Macromolecules 26, 5726(1993).
    [14] A. Podtelezhnikov and A. Vologodskii, Macromolecules 30, 6668(1997).
    [15] M. Ortiz-Repiso, J. Freire, and A. Rey, Macromolecules 31, 8356(1998).
    [16] J. Kim and S. Lee, J. Chem. Phys. 121, 12640(2004).
    [17] J. Kim, W. Lee, J. Sung, and S. Lee, J. Phys. Chem. B 112, 6250(2008).
    [18] (a) G. Wilemski and M. Fixman, J. Chem. Phys. 60, 866(1974); (b) G. Wilemski and M. Fixman, J. Chem. Phys. 60, 878(1974).
    [19] M. Doi, Chem. Phys. 9, 455(1975).
    [20] A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72, 4350(1980).
    [21] A. Ansari, C. Jones, E. Henry, J. Hofrichter, and W. Eaton, Science 256, 1796(1992).
    [22] H. Neuweiler, M. Löllmann, S. Doose, and M. Sauer, J. Mol. Biol. 365, 856(2007).
    [23] A. Möglich, F. Krieger, and T. Kiefhaber, J. Mol. Biol. 345, 153(2005).
    [24] M. Buscaglia, L. Lapidus, W. Eaton, and J. Hofrichter, Biophys. J. 91, 276(2006).
    [25] J. Fernández, A. Rey, J. Freire, and I. de Piérola, Macromolecules 23, 2057(1990).
    [26] S. Chan and K. Dill, J. Chem. Phys. 90, 492(1989).
    [27] P. Debnath and B. Cherayil, J. Chem. Phys. 120, 2482(2004).
    [28] N. Toan, G. Morrison, C. Hyeon, and D. Thirumalai, J. Phys. Chem. B 112, 6094(2008).
    [29] J. Z. Y. Chen, H. Tsao, and Y. Sheng, Phys. Rev. E 72, 031804(2005).
    [30] D. Doucet, A. Roitberg, and S. Hagen, Boiphys. J. 92, 2281(2007).
    [31] I. Yeh and G. Hummer, J. Am. Chem. Soc. 124, 6563(2002).
    [32] T. Uzawa, T. Isoshima, Y. Ito, K. Ishimori, and D. Makarov, and K. Plaxco, Boiphys. J. 104, 2485(2013).
    [33] W. Yu and K. Luo, Sci. China Chem. 58, 689(2015).
    [34] W. Yu and K. Luo, J. Chem. Phys. 142, 124901(2015).
    [35] D. Sarkar, S. Thakur, Y. Tao, and R. Kapral, Soft Matter 10, 9577(2014).
    [36] R. Everaers and A. Rosa, J. Chem. Phys. 136, 014902(2012).
    [37] A. Amitai, I. Kupka, and D. Holcman, Phys. Rev. Lett. 109, 108302(2012).
    [38] A. Amitai and D. Holcman, Phys. Rev. Lett. 110, 248105(2013).
    [39] L. Lapidus, P. Steinbach, W. Eaton, A. Szabo, and J. Hofrichter, J. Phys. Chem. B 106, 11628(2002).
    [40] H. Neuweiler, A. Schulzn, M. Böhmer, J. Enderlein, and M. Sauer, J. Am. Chem. Soc. 125, 5324(2003).
    [41] O. Stiehl, K. Weidner-Hertrampf, and M. Weiss, New J. Phys. 15, 113010(2013).
    [42] J. Shin, A. G. Cherstvy, and R. Metzler, ACS Macro Lett. 4, 202(2015).
    [43] N. Toan, D. Marenduzzo, P. Cook, and C. Micheletti, Phys. Rev. Lett. 97, 17830(2006).
    [44] J. Shin, A. G. Cherstvy, and R. Metzler, Soft Matter 11, 472(2015).
    [45] J. Shin, A. G. Cherstvy, W. K. Kim, and R. Metzler, New J. Phys. 17, 113008(2015).
    [46] S. Kondrat, O. Zimmermann, W. Wiechert, and E. von Lieres, Phys. Biol. 12, 046003(2015).
    [47] H. Kang, N. M. Toan, C. Hyeon, and D. Thirumalai, J. Am. Chem. Soc. 137, 10970(2015).
    [48] K. Kremer and G. Grest, J. Chem. Phys. 92, 5057(1990).
    [49] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237(1971).
    [50] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids New York:Oxford University Press, (1987).
    [51] D. Chandler, Introduction to Modern Statistical Mechanics, New York:Oxford University Press, (1987).
    [52] D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169(1980).
    [53] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251(1990).
    [54] L. Onsager, Ann. N. Y. Acad. Sci. 51, 627(1949).
    [55] S. C. McGrother, D. C. Williamson, and G. Jackson, J. Chem. Phys. 104, 6755(1996).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(967) PDF downloads(579) Cited by()

Proportional views
Related

Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure

doi: 10.1063/1674-0068/30/cjcp1703024

Abstract: Using 3D Langevin dynamics simulations,we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure.The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders.By contrast,the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders.Notably,the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44.We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.

Bai-cheng Xi, Dong-hua Zhang, Jia-jun Wang, Wan-cheng Yu. Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 343-347. doi: 10.1063/1674-0068/30/cjcp1703024
Citation: Bai-cheng Xi, Dong-hua Zhang, Jia-jun Wang, Wan-cheng Yu. Effects of Shape of Crowders on Dynamics of a Polymer Chain Closure[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 343-347. doi: 10.1063/1674-0068/30/cjcp1703024
Reference (55)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return