Xiao-feng Sima, Bing-bing Li, Hong Jiang. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 357-364. doi: 10.1063/1674-0068/30/cjcp1612230
Citation: Xiao-feng Sima, Bing-bing Li, Hong Jiang. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 357-364. doi: 10.1063/1674-0068/30/cjcp1612230

Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process

doi: 10.1063/1674-0068/30/cjcp1612230
  • Received Date: 2016-12-20
  • Rev Recd Date: 2017-04-07
  • Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used.Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process.In this work,we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge.Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g.,flocculating ability,zeta-potential,hydrophobicity,and extracellular polymeric substances constituents).Moreover,the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
  • 加载中
  • [1] D. Jassby, Y. Xiao, and A. J. Schuler, Water Res. 48, 457(2014).
    [2] F. Ç eçen, A. Erdinçler, and E. Kiliç, Adv. Environ. Res. 7, 707(2003).
    [3] M. J. Zhi, F. Yang, F. K. Meng, M. Q. Li, A. Manivannan, and N. Q. Wu, ACS Sustainable Chem. Eng. 2, 1592(2014).
    [4] Z. J. Zhang, J. Li, F. S. Sun, D. H. L. Ng, F. L. Kwong, and S. Q. Liu, Chin. J. Chem. Phys. 24, 103(2011).
    [5] Z. Yang and Y. H. He, Chin. J. Chem. Phys. 29, 557(2016).
    [6] X. L. Li, S. Ning, L. X. Yuan, and Q. X. Li, Chin. J. Chem. Phys. 24, 477(2011).
    [7] C. H. Luo, F. Lü, L. M. Shao, and P. J. He, Water Res. 68, 710(2015).
    [8] S. M. Deng, M. H. Fan, T. J. Wang, and Q. X. Li, Chin. J. Chem. Phys. 27, 361(2014).
    [9] P. Oleszczuk, M. Rycaj, J. Lehmann, and G. Cornelissen, Ecotoxicol. Environ. Saf. 80, 321(2012).
    [10] H. S. Ding and H. Jiang, Bioresour. Technol. 133, 16(2013).
    [11] X. Q. Liu, H. S. Ding, Y. Y. Wang, W. J. Liu, and H. Jiang, Environ. Sci. Technol. 50, 2602(2016).
    [12] Y. Satyawali and M. Balakrishnan, Water Res. 43, 1577(2009).
    [13] W. M. Lewis Jr., W. A. Wurtsbaugh, and H. W. Paerl, Environ. Sci. Technol. 45, 10300(2011).
    [14] K. Y. Park, J. W. Lee, K. G. Song, and K. H. Ahn, Bioresour. Technol. 102, 2462(2011).
    [15] D. J. Conley, H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens, Science 323, 1014(2009).
    [16] S. R. Carpenter, Proc. Natl. Acad. Sci. USA 102, 10002(2005).
    [17] H. W. Paerl and J. Huisman, Science 320, 57(2008).
    [18] L. Shao, Z. Xu, W. Jin, and H. Yin, Pol. J. Environ. Stud. 18, 693(2009).
    [19] J. Makinia, K. Czerwionka, J. Oleszkiewicz, E. Kulbat, and S. Fudala-Ksiazek, Proc. Water Environ. Fed. 2011, 466(2011).
    [20] A. Mukherjee and A. R. Zimmerman, Geoderma 193/194, 122(2012).
    [21] S. Steinbeiss, G. Gleixner, and M. Antonietti, Soil Biol. Biochem. 41, 1301(2009).
    [22] T. Jamieson, E. Sager, and C. Guéguen, Chemosphere 103, 197(2014).
    [23] W. J. Liu, K. Tian, H. Jiang, X. S. Zhang, H. S. Ding, and H. Q. Yu, Environ. Sci. Technol. 46, 7849(2012).
    [24] APHA, Washington, DC, USA:American Publishers Health Association, (1995).
    [25] C. A. Biggs and P. A. Lant, Water Res. 34, 2542(2000).
    [26] Y. M. Zheng, H. Q. Yu, S. J. Liu, and X. Z. Liu, Chemosphere 63, 1791(2006).
    [27] X. Y. Li and S. F. Yang, Water Res. 41, 1022(2007).
    [28] B. Frølund, R. Palmgren, K. Keiding, and P. H. Nielsen, Water Res. 30, 1749(1996).
    [29] R. Bura, M. Cheung, B. Liao, J. Finlayson, B. C. Lee, I. G. Droppo, G. G. Leppard, and S. N. Liss, Water Sci. Technol. 37, 325(1998).
    [30] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem. 28, 350(1956).
    [31] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, J. Biol. Chem. 193, 265(1951).
    [32] B. Frølund, T. Griebe, and P. H. Nielsen, Appl. Microbiol. Biotechnol. 43, 755(1995).
    [33] B. E. Rittmann, W. Bae, E. Namkung, and C. J. Lu, Water Sci. Technol. 19, 517(1987).
    [34] B. M. Wilén, B. Jin, and P. Lant, Water Res. 37, 2127(2003).
    [35] J. Lehmann and S. Joseph, Biochar for Environmental Management:Science and Technology, London:Routledge, (2009).
    [36] B. Jin, B. M. Wilén, and P. Lant, Chem. Eng. J. 95, 221(2003).
    [37] M. J. C. van der Stelta, H. Gerhauserb, J. H. A. Kielb, and K. J. Ptasinski, Biomass Bioenerg. 35, 3748(2011).
    [38] L. H. Mikkelsen and K. Keiding, Water Res. 36, 2451(2002).
    [39] B. M. Wilen, B. Jin, and P. Lant, Water Res. 37, 2127(2003).
    [40] B. Ovez, Process Biochem. 41, 1289(2006).
    [41] C. R. Smith, R. L. Sleighter, P. G. Hatcher, and J. W. Lee, Environ. Sci. Technol. 47, 13294(2013).
    [42] Y. G. Chen, S. Jiang, H. Y. Yuan, Q. Zhou, and G. W. Gu, Water Res. 41, 683(2007).
    [43] M. Guerrero, M. P. Ruiz, Á. Millera, M. U. Alzueta, and R. Bilbao, Energy Fuels 22, 1275(2008).
    [44] C. H. Chia, B. Gong, S. D. Joseph, C. E. Marjo, P. Munroe, and A. M. Rich, Vib. Spectrosc. 62, 248(2012).
    [45] J. Oh and J. Silverstein, J. Environ. Eng. 125, 234(1999).
    [46] J. M. Zhang, C. P. Feng, S. Q. Hong, H. L. Hao, and Y. N. Yang, Water Sci. Technol. 65, 1696(2012).
    [47] S. Jiang, Y. G. Chen, and Q. Zhou, Chem. Eng. J. 132, 311(2007).
    [48] H. Q. Tan, T. T. Li, C. Zhu, X. Q. Zhang, M. Wu, and X. F. Zhu, Int. J. Syst. Evol. Microbiol. 62, 2613(2012).
    [49] E. Pelletier, A. Kreimeyer, S. Bocs, Z. Rouy, G. Gyapay, R. Chouari, D. Rivire, A. Ganesan, P. Daegelen, A. Sghir, G. N. Cohen, C. Medigue, J. Weissenbach, and D. Le Paslier, J. Bacteriol. 190, 2572(2008).
    [50] C. Lee, J. Kim, F. A. Chinalia, S. G. Shin, and S. Hwang, J. Ind. Microbiol. Biotechnol. 36, 769(2009).
    [51] B. Fu, X. Y. Liao, R. Liang, L. Ding, K. Xu, and H. Q. Ren, World J. Microbiol. Biotechnol. 27, 915(2011).
    [52] H. Kojima and M. Fukui, Int. J. Syst. Evol. Microbiol. 61, 1651(2011).
    [53] H. Kojima and M. Fukui, Int. J. Syst. Evol. Microbiol. 64, 1587(2014).
    [54] M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, Chemosphere 99, 19(2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(881) PDF downloads(727) Cited by()

Proportional views
Related

Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process

doi: 10.1063/1674-0068/30/cjcp1612230

Abstract: Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used.Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process.In this work,we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge.Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g.,flocculating ability,zeta-potential,hydrophobicity,and extracellular polymeric substances constituents).Moreover,the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.

Xiao-feng Sima, Bing-bing Li, Hong Jiang. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 357-364. doi: 10.1063/1674-0068/30/cjcp1612230
Citation: Xiao-feng Sima, Bing-bing Li, Hong Jiang. Influence of Pyrolytic Biochar on Settleability and Denitrification of Activated Sludge Process[J]. Chinese Journal of Chemical Physics , 2017, 30(3): 357-364. doi: 10.1063/1674-0068/30/cjcp1612230
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return