En Cao, Shuang Liu, Yu-zhi Song. Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 128-134. doi: 10.1063/1674-0068/30/cjcp1611219
Citation: En Cao, Shuang Liu, Yu-zhi Song. Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 128-134. doi: 10.1063/1674-0068/30/cjcp1611219

Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State

doi: 10.1063/1674-0068/30/cjcp1611219
  • Received Date: 2016-11-17
  • Rev Recd Date: 2017-01-20
  • Potential energies of LiS(2Π), LiS-(1Σ+) and LiS+(3Σ-) are calculated by using the multireference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.
  • 加载中
  • [1] D. E. Jensen and G. A. Jones, Combust. Flame 41, 71 (1981).
    [2] B. Gustafsson, Ann. Rev. Astron. Astrophys. 27, 701 (1989).
    [3] Y. Q. Xu, W. C. Peng, and Y. Q. Cai, Chin. J. Chem. Phys. 33, 749 (2016).
    [4] H. Partridge, S. R. Langho, and C. W. Bauschlicher Jr., J. Chem. Phys. 88, 6431 (1988).
    [5] M. A. Brewster and M. A. Ziurys, Chem. Phys. Lett. 349, 249 (2001).
    [6] E. P. F. Lee and T. G. Wright, Chem. Phys. Lett. 397, 194 (2004).
    [7] T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639 (1997).
    [8] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
    [9] R. J. Le Roy, LEVEL 7.5: A Computer Program for Solving the radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Report CP-655, (2002).
    [10] P. J. Knowles and H. J.Werner, Chem. Phys. Lett. 115, 259 (1985).
    [11] H. J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
    [12] P. J. Knowles and H. J.Werner, Chem. Phys. Lett. 145, 514 (1988).
    [13] F. Khadri, H. Ndome, S. Lahmar, Z. B. Lakhdar, and M. Hochlaf, J. Mol. Spectro. 237, 232 (2006).
    [14] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
    [15] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
    [16] A. I. Boldyrev, J. Simons, and P. V. R. Schleyer, J. Chem. Phys. 99, 8793 (1993).
    [17] P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).
    [18] M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
    [19] T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, J. Comput. Chem. 4, 294 (1983).
    [20] A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).
    [21] R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91 (1978).
    [22] S. Olivella, J. M. Anglada, A. Solé, and J. M. Bo ll, Chem. A Eur. J. 10, 3404 (2004).
    [23] H. J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
    [24] A. J. C. Varandas, J. Chem. Phys. 126, 244105 (2007).
    [25] A. J. C. Varandas, J. Chem. Phys. 127, 114316 (2007).
    [26] A. J. C. Varandas, J. Chem. Phys. 113, 8880 (2000).
    [27] A. Aguado and M. Paniagua, J. Chem. Phys. 96, 1265 (1992).
    [28] A. Aguado, C. Tablero, and M. Paniagua, Comput. Phys. Commun. 108, 259 (1998).
    [29] H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. Mc-Nicholas, W. Meyer, M. E. Mura, A. Nicklaβ, D. P. O'Neill, P. Palmieri, D. Peng, K. P uger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, MOLPRO Ver-sion 2012.1, (2012). (www.molpro.net)
    [30] L. L. Zhang, S. B. Gao, Q. T. Meng, and Y. Z. Song, Chin. Phys. B 24, 013101 (2015).
    [31] Y. L. Liu, H. S. Zhai, X. M. Zhang, and Y. F. Liu, Chem. Phys. 425, 156 (2013).
    [32] S. Y. Liu and H. S. Zhai, J. At. Mol. Sci. 6 197 (2015).
    [33] Y. Z. Song and A J C. Varandas, J. Chem. Phys. 130, 134317 (2009).
    [34] A. Karton and J. M. L. Martin, Theor. Chem. Acc. 115, 330 (2006).
    [35] L. L. Zhang, J. Zhang, Q. T. Meng, and Y. Z. Song, Phys. Script. 90, 035403 (2015).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(942) PDF downloads(772) Cited by()

Proportional views
Related

Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State

doi: 10.1063/1674-0068/30/cjcp1611219

Abstract: Potential energies of LiS(2Π), LiS-(1Σ+) and LiS+(3Σ-) are calculated by using the multireference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.

En Cao, Shuang Liu, Yu-zhi Song. Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 128-134. doi: 10.1063/1674-0068/30/cjcp1611219
Citation: En Cao, Shuang Liu, Yu-zhi Song. Accurate Theoretical Study of LiS Radical and Its Singly Charged Cation and Anion in their Ground Electronic State[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 128-134. doi: 10.1063/1674-0068/30/cjcp1611219
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return