Li Jiang, Hui-ya Li, Dao-yong Chen. Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 211-218. doi: 10.1063/1674-0068/30/cjcp1611218
Citation: Li Jiang, Hui-ya Li, Dao-yong Chen. Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 211-218. doi: 10.1063/1674-0068/30/cjcp1611218

Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier

doi: 10.1063/1674-0068/30/cjcp1611218
  • Received Date: 2016-11-15
  • Rev Recd Date: 2016-11-30
  • Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-r-poly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre-pared simply and efficiently by Glaser-coupling of the pendant alkynes in the PMAEP-r-PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by ag-gregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpar-ticles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.
  • 加载中
  • [1] K. K. Zhang, M. Jiang, and D. Y. Chen, Prog. Polym. Sci. 37, 445 (2012).
    [2] R. Erhardt, M. F. Zhang, A. Böer, H. Zettl, C. Abetz, P. Frederik, G. Krausch, V. Abetz, and A. H. E. Müller, J. Am. Chem. Soc. 125, 3260 (2003).
    [3] Z. L. Zhang and S. C. Glotzer, Nano Lett. 4, 1407 (2004).
    [4] L. Cheng, G. L. Hou, J. J. Miao, D. Y. Chen, M. Jiang, and L. Zhu, Macromolecules 41, 8159 (2008).
    [5] S. Y. Ma, Y. Hu, and R. Wang, Macromolecules 48, 3112 (2015).
    [6] S. C. Glotzer, M. A. Horsch, C. R. Iacovella, Z. L. Zhang, E. R. Chan, and X. Zhang, Curr. Opin. Colloid Interface Sci. 10, 287 (2005).
    [7] A. H. Gröschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A.Walther, and A. H. E.Müller, Nat. Commun. 3, 710 (2012).
    [8] J. M. Hu, T. Wu, G. Y. Zhang, and S. Y. Liu, J. Am. Chem. Soc. 134, 7624 (2012).
    [9] L. Nie, S. Y. Liu, W. M. Shen, D. Y. Chen, and M. Jiang, Angew. Chem. Int. Ed. 46, 6321 (2007).
    [10] L. Cheng, G. Z. Zhang, L. Zhu, D. Y. Chen, and M. Jiang, Angew. Chem. Int. Ed. 47, 10171 (2008).
    [11] Z. Zhang, C. M. Zhou, H. Y. Dong, and D. Y. Chen, Angew. Chem. Int. Ed. 55, 6182 (2016).
    [12] W. A. Zhang, B. Fang, A.Walther, and A. H. E. Müller, Macromolecules 42, 2563 (2009).
    [13] E. Harth, B. Van Horn, V. Y. Lee, D. S. Germack, C. P. Gonzales, R. D. Miller, and C. J. Hawker, J. Am. Chem. Soc. 124, 8653 (2002).
    [14] M. Gonzalez-Burgos, A. Latorre-Sanchez, and J. A. Pomposo, Chem. Soc. Rev. 44, 6122 (2015).
    [15] M. X. Xie, L. Jiang, Z. P. Xu, and D. Y. Chen, Chem. Commun. 51, 1842 (2015).
    [16] G. Njikang, G. J. Liu, and S. A. Curda, Macromolecules 41, 5697 (2008).
    [17] F. G. Xu, Z. H. Fang, D. G. Yang, Y. Gao, H. M. Li, and D. Y. Chen, ACS Appl. Mat. Interfaces 6, 6717 (2014).
    [18] A. M. Hanlon, C. K. Lyon, and E. B. Berda, Macromolecules 49, 2 (2016).
    [19] C. K. Lyon, A. Prasher, A. M. Hanlon, B. T. Tuten, C. A. Tooley, P. G. Frank, and E. B. Berda, Polym. Chem. 6, 181 (2015).
    [20] R. K. Roy and J. F. Lutz, J. Am. Chem. Soc. 136, 12888 (2014).
    [21] L. Oria, R. Aguado, J. A. Pomposo, and J. Colmenero, Adv. Mater. 22, 3038 (2010).
    [22] J. Pyun, C. B. Tang, T. Kowalewski, J. M. J. Fréchet, and C. J. Hawker, Macromolecules 38, 2674 (2005).
    [23] M. Ouchi, N. Badi, J. F. Lutz, and M. Sawamoto, Nat. Chem. 3, 917 (2011).
    [24] M. Artar, E. R. J. Souren, T. Terashima, E. W. Meijer, and A. R. A. Palmans, ACS Macro. Lett. 4, 1099 (2015).
    [25] J. Y. Lee, A. C. Balazs, R. B. Thompson, and R. M. Hill, Macromolecules 37, 3536 (2004).
    [26] J. G. Wen, L. Yuan, Y. F. Yang, L. Liu, and H. Y. Zhao, ACS Macro. Lett. 2, 100 (2013).
    [27] J. G. Wen, J. Zhang, Y. Zhang, Y. F. Yang, and H. Y. Zhao, Polym. Chem. 5, 4032 (2014).
    [28] W. K. Li, C. H. Kuo, I. Kanyo, S. Thanneeru, and J. He, Macromolecules 47, 5932 (2014).
    [29] W. K. Li, S. Thanneeru, I. Kanyo, B. Liu, and J. He, ACS Macro. Lett. 4, 736 (2015).
    [30] F. Zhou, M. X. Xie, and D. Y. Chen, Macromolecules 47, 365 (2014).
    [31] H. J. Zhang, H. S. Xia, J. Wang, and Y. W. Li, J. Controlled Release 139, 31 (2009).
    [32] G. A. Husseini and W. G. Pitt, Adv. Drug Delivery Rev. 60, 1137 (2008).
    [33] X. L. Jiang, M. C. Lok, and W. E. Hennink, Bioconjugate Chem. 18, 2077 (2007).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1076) PDF downloads(883) Cited by()

Proportional views
Related

Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier

doi: 10.1063/1674-0068/30/cjcp1611218

Abstract: Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-r-poly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2-(dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre-pared simply and efficiently by Glaser-coupling of the pendant alkynes in the PMAEP-r-PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by ag-gregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpar-ticles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.

Li Jiang, Hui-ya Li, Dao-yong Chen. Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 211-218. doi: 10.1063/1674-0068/30/cjcp1611218
Citation: Li Jiang, Hui-ya Li, Dao-yong Chen. Superparticles Formed by Amphiphilic Tadpole-like Single Chain Polymeric Nanoparticles and Their Application as an Ultrasonic Responsive Drug Carrier[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 211-218. doi: 10.1063/1674-0068/30/cjcp1611218
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return