Rui Mao, Chao He, Min Chen, Dan-na Zhou, Qun Zhang, Yang Chen. Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 123-127. doi: 10.1063/1674-0068/30/cjcp1611208
Citation: Rui Mao, Chao He, Min Chen, Dan-na Zhou, Qun Zhang, Yang Chen. Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 123-127. doi: 10.1063/1674-0068/30/cjcp1611208

Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study

doi: 10.1063/1674-0068/30/cjcp1611208
  • Received Date: 2016-11-11
  • Rev Recd Date: 2017-01-25
  • We report on the photodissociation dynamics of CO2+ via its Ã2Πu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected Ã2Πu,1/2( u1,u2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2+, the dissociation mechanism of CO2+ is discussed. The conformational variation of CO2+ from linear to bent on the photodissociation dynamics of CO2+ is verified.
  • 加载中
  • [1] C. S. Chang, C. Y. Luo, and K. P. Liu, J. Phys. Chem. A 109, 1022 (2005).
    [2] M. H. Kim, L. Shen, H. L. Tao, T. J. Martinez, and A. G. Suits, Science 315, 1561 (2007).
    [3] A. D. Webb, N. H. Nahler, and M. N. R. Ashfold, J. Phys. Chem. A 113, 3773 (2009).
    [4] A. G. Sage, T. A. A. Oliver, R. N. Dixon, and M. N. R. Ashfold, Mol. Phys. 108, 945 (2010).
    [5] A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997).
    [6] Y. Z. Liu, X. L. Deng, S. Li, Y. Guan, J. Li, J. Y. Long, and B. Zhang, Acta Phys. Sin. 65, 193301 (2016).
    [7] S. Pandit, T. J. Preston, S. J. King, C. Vallance, and A. J. Orr-Ewing, J. Chem. Phys. 144, 244312 (2016).
    [8] H. W. Li, N. M. Kidwell, X. H. Wang, J. M. Bowman, and M. I. Lester, J. Chem. Phys. 145, 104307 (2016).
    [9] Y. Z. Liu, T. Gerber, C. C. Qin, F. Jin, and G. Knopp, J. Chem. Phys. 144, 084201 (2016).
    [10] W Wei, C. J. Wallace, G. C. McBane, and S. W. North, J. Chem. Phys. 145, 024310 (2016).
    [11] Y. Z. Liu, G. Knopp, C. C. Qin, and T. Gerber, Chem. Phys. 446, 142 (2015).
    [12] C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, and T. N. Kitsopoulos, Rev. Sci. Instrum. 72, 3848 (2001).
    [13] J. B. Liu, W. W. Chen, C. W. Hsu, M. Hochlaf, M. Evans, S. Stimson, and C. Y. Ng, J. Chem. Phys. 112, 10767 (2000).
    [14] J. B. Liu, M. Hochlaf, and C. Y. Ng, J. Chem. Phys. 113, 7988 (2000).
    [15] J. B. Liu, W. W. Chen, M. Hochlaf, X. M. Qian, C. Chang, and C. Y. Ng, J. Chem. Phys. 118, 149 (2003).
    [16] M. P. Yang, L. M. Zhang, X. J. Zhuang, L. K. Lai, and S. Q. Yu, J. Chem. Phys. 128, 164308 (2008).
    [17] M. P. Yang, L. M. Zhang, D. N. Zhou, and Q. Sun, J. Mol. Spectrsc. 261, 68 (2010).
    [18] M. P. Yang, L. M. Zhang, L. K. Lai, D. N. Zhou, J. T. Wang, and Q. Sun, Chem. Phys. Lett. 480, 41 (2009).
    [19] R. Mao, Q. Zhang, M. Chen, C. He, D. N. Zhou, X. L. Bai, L. M. Zhang, and Y. Chen, J. Chem. Phys. 139, 166101 (2013).
    [20] J. L. Li, C. M. Zhang, Q. Zhang, Y. Chen, C. S. Huang, and X. M. Yang, J. Chem. Phys. 134, 114309 (2011).
    [21] R. Mao, Q. Zhang, J. Z. Zang, C. He, M. Chen, and Y. Chen, J. Chem. Phys. 135, 244302 (2011).
    [22] B. Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum. 69, 1665 (1998).
    [23] G. Herzberg, The Spectra and Structures of Simple Free Radicals: An Introduction to Molecular Spectroscopy, Ithaca and London: Cornell University Press, (1971).
    [24] B. D. Leskiw, M. H. Kim, G. E. Hall, and A. G. Suits, Rev. Sci. Instrum. 76, 104101 (2005).
    [25] T. A. Dixon and R. C. Woods, Phys. Rev. Lett. 34, 61 (1975).
    [26] R. Polák, M. Hochlaf, M. Levinas, G. Chambaud, and P. Rosmus, Spectrochim. Acta A 55, 447 (1999).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1379) PDF downloads(1281) Cited by()

Proportional views
Related

Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study

doi: 10.1063/1674-0068/30/cjcp1611208

Abstract: We report on the photodissociation dynamics of CO2+ via its Ã2Πu,1/2 state using the scheme of [1+1] photon excitation that is intermediated by the mode-selected Ã2Πu,1/2( u1,u2,0) vibronic states. Photodissociation fragment exciation spectrum and images of photofragment CO+ have been measured to obtain reaction dynamics parameters such as the available energy and the average translational energy. Combining with the potential energy functions of CO2+, the dissociation mechanism of CO2+ is discussed. The conformational variation of CO2+ from linear to bent on the photodissociation dynamics of CO2+ is verified.

Rui Mao, Chao He, Min Chen, Dan-na Zhou, Qun Zhang, Yang Chen. Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 123-127. doi: 10.1063/1674-0068/30/cjcp1611208
Citation: Rui Mao, Chao He, Min Chen, Dan-na Zhou, Qun Zhang, Yang Chen. Photodissociation Dynamics of Carbon Dioxide Cation via the Vibrationally Mediated Ã2Πu,1/2 State: A Time-Sliced Velocity-Mapped Ion Imaging Study[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 123-127. doi: 10.1063/1674-0068/30/cjcp1611208
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return