Ang Li, Zi-jing Lin. Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 139-146. doi: 10.1063/1674-0068/30/cjcp1610198
Citation: Ang Li, Zi-jing Lin. Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 139-146. doi: 10.1063/1674-0068/30/cjcp1610198

Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack

doi: 10.1063/1674-0068/30/cjcp1610198
  • Received Date: 2016-10-23
  • Rev Recd Date: 2016-11-05
  • A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent®. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30-cell stack with a production scale cell size. Detailed information about the stack performance is revealed and brie y discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.

     

  • loading
  • [1]
    B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).
    [2]
    R. M. Ormerod, Chem. Soc. Rev. 32, 17 (2003).
    [3]
    A. Hawkes, I. Staffell, D. Brett, and N. Brandon, En-ergy Environ. Sci. 2, 729 (2009).
    [4]
    R. J. Gorte and J. M. Vohs, Ann. Rev. Chem. Biomol. Eng. 2, 9 (2011).
    [5]
    I. Dincer and C. Acar, Int. J. Energy Res. 39, 585 (2015).
    [6]
    H. Yakabe, T. Ogiwara, M. Hishinuma, and I. Yasuda, J. Power Sources 102, 144 (2001).
    [7]
    E. Achenbach, J. Power Sources 49, 333 (1994).
    [8]
    J. R. Ferguson, J. M. Fiard, and R. Herbin, J. Power Sources 58, 109 (1996).
    [9]
    H. Yakabe, M. Hishunuma, M. Uratani, Y. Matsuzaki, and I. Yasuda, J. Power Sources 86, 423 (2000).
    [10]
    M. Iwata, T. Hikosaka, M. Morita M, T. Iwanari, K. Ito, K. Onda, Y. Esaki, Y. Sakaki, and S. Nagata, Solid State Ionics 132, 297 (2000).
    [11]
    P. V. Hendriksen, Model Studies of Internal Steam Reforming in SOFC Stacks. Solid Oxide Fuel Cells (SOFC-5) Proceedings, U. Stimming, S. C. Singhal, H. Tagawa, and W. Lehnert Eds., Pennington, NJ: Elec-trochemical Society, Incorporated, 1319 (1997).
    [12]
    Z. J. Lin, Y. Gu, and X. H. Zhang, J. Electrochem. 8, 445 (2002).
    [13]
    D. H. Jeon, J. H. Nam, and C. J. Kim, J. Electrochem. Soc. 153, A406 (2006).
    [14]
    D. H. Jeon, Electrochim. Acta 54, 2727 (2009).
    [15]
    P.-W. Li and M. K. Chyu, J. Power Sources 124, 487 (2003).
    [16]
    M. Lockett, M. J. H. Simmons, and K. Kendall, J. Power Sources 131, 243 (2004).
    [17]
    G. L. Wang, Y. Z. Yang, H. O. Zhang, and W. S. Xia, J. Power Sources 167, 398 (2007).
    [18]
    S. X. Liu, C. Song, and Z. J. Lin, J. Power Sources 183, 214 (2008).
    [19]
    F. Arpino and N. Massarotti, Energy 34, 2033 (2009).
    [20]
    S. X. Liu, W. Kong, and Z. J. Lin, J. Power Sources 194, 854 (2009).
    [21]
    W. S. Xia, Y. Z. Yang, and Q. S. Wang, J. Power Sources 194, 886 (2009).
    [22]
    T. X. Ho, P. Kosinski, A. C. Hoffmann, and A. Vik, J. Power Sources 195, 6764 (2010).
    [23]
    A. Mauro, F. Arpino, and N. Massarotti, Int. J. Hydro-gen Energy 36, 10288 (2011).
    [24]
    H. Iwai, Y. Yamamoto, M. Saito, and H. Yoshida, En-ergy 36, 2225 (2011).
    [25]
    W. Kong, J. Y. Li, S. X. Liu, and Z. J. Lin, J. Power Sources 204, 106 (2012).
    [26]
    W. Kong, H. Y. Zhu, Z. Y. Fei, and Z. J. Lin, J. Power Sources 206, 171 (2012).
    [27]
    M. Ni, Energy Convers. Manag. 70, 116 (2013).
    [28]
    X. Han, D. Zheng, and B. F. Bai, Energy 67, 575 (2014).
    [29]
    H. R. Amedi, B. Bazooyar, and M. R. Pishvaie, Energy 90, 605 (2015).
    [30]
    B. X. Wang, J. Zhu, and Z. Lin, Appl. Energy 176, 1 (2016).
    [31]
    K. P. Recknagle, R. E. Williford, L. A. Chick, and M. A. Khaleel, J. Power Sources 113, 109 (2003).
    [32]
    N. Autissier, D. Larrain, J. Van herle, and D. Favrat, J. Power Sources 131, 313 (2004).
    [33]
    R. T. Leah, N. P. Brandon, and P. Aguiar, J. Power Sources 145, 336 (2005).
    [34]
    C. M. Huang, S. S. Shy, and C. H. Lee, J. Power Sources 183, 205 (2008).
    [35]
    A. A. Kulikovsky, J. Fuel Cell Sci. Technol. 7, 011015 (2010).
    [36]
    S. Hosseini, K. Ahmed, and M. O. Tad, J. Power Sources 234, 180 (2013).
    [37]
    B. Lin, Y. X. Shi, M. Ni, and N. S. Cai, Int. J. Hydrogen Energy 40, 3035 (2015).
    [38]
    M. Fardadi, D. F. McLarty, and F. Jabbari, Appl. En-ergy 178, 43 (2016).
    [39]
    W. X. Bi, D. F. Chen, and Z. J. Lin, Int. J. Hydrogen Energy 34, 3873 (2009).
    [40]
    M. Peksen, Int. J. Hydrogen Energy 36, 11914 (2011).
    [41]
    M. Peksen, Int. J. Hydrogen Energy 39, 5137 (2014).
    [42]
    S. S. Wei, T. H. Wang, and J. S. Wu, Energy 69, 553 (2014).
    [43]
    A. Al-Masri, M. Peksen, L. Blum, and D. Stolten, Appl. Energy 135, 539 (2014).
    [44]
    L. Petruzzi, S. Cocchi, and F. Fineschi, J. Power Sources 118, 96 (2003).
    [45]
    A. C. Burt, I. B. Celik, R. S. Gemmen, and A. V. Smirnov, J. Power Sources 126, 76 (2004).
    [46]
    M. A. Khaleel, Z. Lin, P. Singh, W. Surdoval, and D. Collin, J. Power Sources 130, 136 (2004).
    [47]
    B. A. Haberman and J. B. Young, J. Fuel Cell Sci. Technol. 5, 011006 (2008).
    [48]
    H. Mounir, A. El Gharad, M. Belaiche, and M Boukalouch, Energy Convers. Manag. 50, 2685 (2009).
    [49]
    C. K. Lin, L. H. Huang, L. K. Chiang, and Y. P. Chyou, J. Power Sources 192, 515 (2009).
    [50]
    S. F. Lee and C. W. Hong, Int. J. Hydrogen Energy 35, 1330 (2010).
    [51]
    K. Sudaprasert, R. P. Travis, and R. F. Martinez-Botas, J. Fuel Cell Sci. Technol. 7, 011002 (2010).
    [52]
    K. Lai, B. J. Koeppel, K. S. Choi, K. P. Recknagle, X. Sun, L. A. Chick, V. Korolev, and M. Khaleel, J. Power Sources 196, 3204 (2011).
    [53]
    ANSYS, ANSY S FLUENT 14.5 in ANSY S Workbench Users Guide, Canonsburg, PA: ANSYS, Inc., (2012).
    [54]
    A. Li, X. Fang, and Z. Lin, ECS Trans. 68, 3025 (2015).
    [55]
    B. X.Wang, J. Zhu, and Z. J. Lin, Chin. J. Chem. Phys. 28, 299 (2015).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1093) PDF downloads(962) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return