Yu-qing Song, Xiao-ping Wang. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 193-199. doi: 10.1063/1674-0068/30/cjcp1610191
Citation: Yu-qing Song, Xiao-ping Wang. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 193-199. doi: 10.1063/1674-0068/30/cjcp1610191

Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

doi: 10.1063/1674-0068/30/cjcp1610191
  • Received Date: 2016-10-09
  • Rev Recd Date: 2016-11-04
  • We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di-minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indi-cates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.
  • 加载中
  • [1] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fuden-berg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
    [2] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
    [3] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
    [4] M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, Phys. Rev. B 78, 161407 (2008).
    [5] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
    [6] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008).
    [7] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, Nano Lett. 8, 1965 (2008).
    [8] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
    [9] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nano 5, 574 (2010).
    [10] H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Nat. Commun. 4, 2096 (2013).
    [11] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
    [12] T. Fujita, W. Kobayashi, and C. Oshima, Surf. Inter-face Anal. 37, 120 (2005).
    [13] J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).
    [14] S. Chen, L. Brown, M. Levendorf, W. Cai, S. Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, ACS Nano 5, 1321 (2011).
    [15] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, and Y. H. Lee, Nature 490, 235 (2012).
    [16] B. Wang, Y. S. Puzyrev, and S. T. Pantelides, Polyhe-dron 64, 158 (2013).
    [17] S. S. Roy and M. S. Arnold, Adv. Func. Mater. 23, 3638 (2013).
    [18] Y. H. Zhang, B. Wang, H. R. Zhang, Z. Y. Chen, Y. Q. Zhang, B. Wang, Y. P. Sui, X. L. Li, X. M. Xie, G. H. Yu, Z. Jin, and X. Y. Liu, Carbon 70, 81 (2014).
    [19] L. Ma, J. Wang, and F. Ding, Angew Chem. Int. Ed. Engl. 51, 1161 (2012).
    [20] D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, ACS Nano 6, 1102 (2012).
    [21] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
    [22] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, Nano Lett. 12, 414 (2012).
    [23] J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Wes-terink, G. A. Sawatzky, and M. T. Czyzyk, Phys. Rev. B 38, 11322 (1988).
    [24] C. Malitesta, T. Rotunno, L. Sabbatini, and P. G. Zam-bonin, J. Chem. Soc. Faraday Trans. 86, 3607 (1990).
    [25] C. C. Chusuei, M. A. Brookshier, and D. W. Goodman, Langmuir 15, 2806 (1999).
    [26] N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
    [27] G. K. White and S. J. Collocott, J. Phys. Chem. Ref. Data 13, 1251 (1984).
    [28] J. L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, and R. Car, Phys. Rev. Lett. 96, 176101 (2006).
    [29] Z. Li, W. Zhang, Y. Luo, J. Yang, and J. G. Hou, J. Am. Chem. Soc. 131, 6320 (2009).
    [30] E. Starodub, N. C. Bartelt, and K. F. McCarty, J. Phys. Chem. C 114, 5134 (2010).
    [31] V. Johánek, G. W. Cushing, J. K. Navin, and I. Harri-son, Surf. Sci. 644, 165 (2016).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(915) PDF downloads(596) Cited by()

Proportional views
Related

Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

doi: 10.1063/1674-0068/30/cjcp1610191

Abstract: We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di-minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indi-cates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.

Yu-qing Song, Xiao-ping Wang. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 193-199. doi: 10.1063/1674-0068/30/cjcp1610191
Citation: Yu-qing Song, Xiao-ping Wang. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 193-199. doi: 10.1063/1674-0068/30/cjcp1610191
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return