Fu-xing Lin, Kun Zeng, Wen-xiu Yang, Mo-zhen Wang, Jie-lin Rong, Juan Xie, Yu Zhao, Xue-wu Ge. γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 231-238. doi: 10.1063/1674-0068/30/cjcp1609185
Citation: Fu-xing Lin, Kun Zeng, Wen-xiu Yang, Mo-zhen Wang, Jie-lin Rong, Juan Xie, Yu Zhao, Xue-wu Ge. γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 231-238. doi: 10.1063/1674-0068/30/cjcp1609185

γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance

doi: 10.1063/1674-0068/30/cjcp1609185
  • Received Date: 2016-09-23
  • Rev Recd Date: 2016-10-17
  • Chitosan (CS) is expected to be an ideal gene carrier for its high biosafety. In this work, CS with low molecular weight were prepared through the γ-ray radiation on the acetic acid solution of CS. The CS chains were scissioned under the γ-ray radiation, and the molecular weight (MW) of CS decreased with the absorbed dose. When the absorbed dose was above 30 kGy, the molecular weight of CS decreased about an order of magnitude. The γ-ray-radiation-scissioned CS can e ectively bind with plasmid (pEGFP) through complex coacervation method, forming pEGFP/ γ-ray-radiation-scissioned CS complex particles with a size of 200-300 nm. The complex particles have good stability and little cytotoxicity. The in uitro gene transfection efficiencies of the pEGFP/ γ-ray-radiation-scissioned CS complex particles were investigated by fluorescence microscope and flow cytometry. The results showed that the gene vectors using γ-ray-radiation-scissioned CS as the carrier will possess better gene transfection efficiency than those using natural high-MW CS as the carrier. The higher the absorbed dose, the smaller the MW of CS and the better transfection efficiency of the corresponding gene vector. This work provides a green and simple method on the preparation of CS-based gene vectors with high efficiency and biosafety.
  • 加载中
  • [1] T. Feldman, E. Foster, D. D. Glower, S. Kar, M. J. Rinaldi, P. S. Fail, R. W. Smalling, R. Siegel, G. A. Rose, E. Engeron, C. Loghin, A. Trento, E. R. Skipper, T. Fudge, G. V. Letsou, J. M. Massaro, and L. Mauri, New Engl. J. Med. 364, 1395 (2011).
    [2] S. Gurunathan, D. M. Klinman, and R. A. Seder, Annu. Rev. Immunol. 18, 927 (2000).
    [3] D. W. Hutmacher, Biomaterials 21, 2529 (2000).
    [4] R. C. Mulligan, Science 260, 926 (1993).
    [5] S. L. Ginn, I. E. Alexander, M. L. Edelstein, M. R. Abedi, and J. Wixon, J. Gene Med. 15, 65 (2013).
    [6] R. Cheng, F. Feng, F. H. Meng, C. Deng, J. Feijen, and Z. Y. Zhong, J. Controll. Release 152, 2 (2011).
    [7] J. M. Leiden, Science 285, 1215 (1999).
    [8] L. Jin, X. Zeng, M. Liu, Y. Deng, and N. Y. He, Theranostics 4, 240 (2014).
    [9] W. F. Anderson, J. Med. Philos. 10, 275 (1985)
    [10] D. Luo and W. M. Saltzman, Nature Biotechnol. 18, 33 (2000).
    [11] F. J. Feuerbach and R. G. Crystal, Kidney Int. 49, 1791 (1996).
    [12] G. S. Pari and Y. Y. Xu, Methods Mol. Biol. 245, 25 (2004).
    [13] C. Chen and H. Okayama, Mol. Cell. Biol. 7, 2745 (1987).
    [14] F. L. Graham and A. J. van der Eb, Virology 52, 456 (1973).
    [15] H. Luthman and G. Magnusson, Nucleic Acids Res. 11, 1295 (1983).
    [16] V. P. Torchilin, Nature Rev. 4, 145 (2005).
    [17] T. G. Park, J. H. Jeong, and S. W. Kim, Adv. Drug Deliver. Rev. 58, 467 (2006).
    [18] M. Giacca and S. Zacchigna, J. Controll. Release 161, 377 (2012).
    [19] J. D. Hood, M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh, Science 296, 2404 (2002).
    [20] N. Miller and R. Vile, FASEB J. 9, 190 (1995).
    [21] T. Niidome and L. Huang, Gene Therapy 9, 1647 (2002).
    [22] W. T. Godbey, K. K. Wu, and A. G. Mikos, J. Controll. Release 60, 149 (1999).
    [23] Y. Barenholz, Curr. Opin. Colloid Interface Sci. 6, 66 (2001).
    [24] M. C. Pedroso de Lima, S. Simões, P. Pires, H. Faneca, and N. Düzgüne s, Adv. Drug Deliver. Rev. 47, 277 (2001).
    [25] J. M. Dang and K. W. Leong, Adv. Drug Deliver. Rev. 58, 487 (2006).
    [26] J. Panyam and V. Labhasetwar, Adv. Drug Deliver. Rev. 55, 329 (2003).
    [27] M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006).
    [28] K. Tomihata and Y. Ikada, Biomaterials 18, 567 (1997).
    [29] I. A. Khalil, K. Kogure, H. Akita, and H. Harashima, Pharmacol. Rev. 58, 32 (2006)
    [30] N. Poth, V. Seiffart, G. Gross, H. Menzel, and W. Dempwolf, Biomolecules 5, 3 (2015).
    [31] H. Q. Mao, K. Roy, V. L. Troung-Le, K. A. Janes, K. Y. Lin, Y. Wang, J. T. August, and K. W. Leong, J. Controll. Release 70, 399 (2001).
    [32] S. Mao, W. Sun, and T. Kissel, Adv. Drug Deliver. Rev. 62, 12 (2010).
    [33] T. H. Kim, H. L, Jiang, D. Jere, I. K. Park, M. H. Cho, J. W. Nah, Y. J. Choi, T. Akaike, and C. S. Cho, Progress Polym. Sci. 32, 726 (2007).
    [34] A. B. Sieval, M. Thanou, A. F. Kotzé, J. C. Verhoef, J. Brussee, and H. E. Junginger, Carbohydrate Polym. 36, 157 (1998).
    [35] T. Kean, S. Roth, and M. Thanou, J. Controll. Release, 103, 643 (2005).
    [36] Y. Wang, F. X. Lin, Y. Zhao, M. Z. Wang, X. W. Ge, Z. X. Gong, D. D. Bao, and Y. F. Gu, Int. J. Nanomed. 9, 4965 (2014).
    [37] F. X. Lin, J. L. Rong, M. Z.Wang, D. D. Bao, Y.Wang, Z. X. Gong, Y. F. Gu, Y. Zhao, and X. W. Ge, J. Mater. Chem. B 4, 893 (2016).
    [38] H. L. Jiang, Y. K. Kim, R. Arote, J. W. Nah, M. H. Cho, Y. J. Choi, T. Akaike, and C. S. Cho, J. Controll. Release 117, 273 (2007).
    [39] S. Nimesh, M. M. Thibault, M. Lavertu, M. D. Buschmann, Mol. Biotechnol. 46, 182 (2010).
    [40] M. Lavertu, S. Méthot, N. Tran-Khanh, and M. D. Buschmann, Biomaterials 27, 4815 (2006).
    [41] M. Dash, F. Chiellini, E. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci. 36, 981 (2011).
    [42] M. Köping-Höggård, K. M. Vårum, M. Issa, D. Danielsen, B. E. Christensen, B. T. Stokke, and P. Artursson, Gene Ther. 11, 1441 (2004).
    [43] S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stabil. 75, 73 (2002).
    [44] D. de Britto and S. P. Campana-Filho, Polym. Degrad. Stabil. 84, 353 (2004).
    [45] E. N. Fedoseeva, Y. D. Semchikov, and L. A. Smirnova, Polym. Sci. Ser. B 48, 295 (2006).
    [46] J. C. Cabrera and P. V. Cutsem, Biochem. Eng. J. 25, 165 (2005).
    [47] B. Kang, Y. D. Dai, H. Q. Zhang, and D. Chen, Polym. Deg. Stab. 92, 359 (2007).
    [48] J. M. Wasikiewic, F. Yoshii, N. Nagasawa, R. A. Wach, and H. Mitomo, Radiat. Phys. Chem. 73, 287 (2005).
    [49] H. A. Abd El-Rehim, D. A. Zahran, N. M. El-Sawy, E. A. Hegazy, and A. M. Elbarbary, Biosci. Biotechnol. Biochem. 79, 997 (2015).
    [50] A. Khan, S. Mehmood, M. Shafiq, T. Yasin, Z. Akhter, and S. Ahmad, Radiat. Phys. Chem. 91, 138 (2013).
    [51] F. I. Abou El Fadl, J. Radioanal. Nuclear Chem. 301, 529 (2014).
    [52] G. K. McMaster and G. G. Carmichael, Proc. Natl. Acad. Sci. USA 74, 4835 (1977).
    [53] G. G. Maghami and G. A. Roberts, Macromol. Chem. Phys. 189, 195 (1988).
    [54] X. D. Liu, K. A. Howard, M. D. Dong, M. Andersen, U. L. Rahbek, M. G. Johnsen, O. C. Hansen, F. Besenbacher, and J. Kjems, Biomaterials 28, 1280 (2007).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1002) PDF downloads(847) Cited by()

Proportional views
Related

γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance

doi: 10.1063/1674-0068/30/cjcp1609185

Abstract: Chitosan (CS) is expected to be an ideal gene carrier for its high biosafety. In this work, CS with low molecular weight were prepared through the γ-ray radiation on the acetic acid solution of CS. The CS chains were scissioned under the γ-ray radiation, and the molecular weight (MW) of CS decreased with the absorbed dose. When the absorbed dose was above 30 kGy, the molecular weight of CS decreased about an order of magnitude. The γ-ray-radiation-scissioned CS can e ectively bind with plasmid (pEGFP) through complex coacervation method, forming pEGFP/ γ-ray-radiation-scissioned CS complex particles with a size of 200-300 nm. The complex particles have good stability and little cytotoxicity. The in uitro gene transfection efficiencies of the pEGFP/ γ-ray-radiation-scissioned CS complex particles were investigated by fluorescence microscope and flow cytometry. The results showed that the gene vectors using γ-ray-radiation-scissioned CS as the carrier will possess better gene transfection efficiency than those using natural high-MW CS as the carrier. The higher the absorbed dose, the smaller the MW of CS and the better transfection efficiency of the corresponding gene vector. This work provides a green and simple method on the preparation of CS-based gene vectors with high efficiency and biosafety.

Fu-xing Lin, Kun Zeng, Wen-xiu Yang, Mo-zhen Wang, Jie-lin Rong, Juan Xie, Yu Zhao, Xue-wu Ge. γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 231-238. doi: 10.1063/1674-0068/30/cjcp1609185
Citation: Fu-xing Lin, Kun Zeng, Wen-xiu Yang, Mo-zhen Wang, Jie-lin Rong, Juan Xie, Yu Zhao, Xue-wu Ge. γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in uitro Gene Transfection Performance[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 231-238. doi: 10.1063/1674-0068/30/cjcp1609185
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return