Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184
Citation: Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184

Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders

doi: 10.1063/1674-0068/30/cjcp1609184
  • Received Date: 2016-09-22
  • Rev Recd Date: 2016-10-29
  • The dynamics of tracers in crowded matrix is of interest in various areas of physics, such as the diffusion of proteins in living cells. By using two-dimensional (2D) Langevin dynamics simulations, we investigate the diffusive properties of a tracer of a diameter in crowded environments caused by randomly distributed crowders of a diameter. Results show that the emergence of subdiffusion of a tracer at intermediate time scales depends on the size ratio of the tracer to crowders δ. If δ falls between a lower critical size ratio and a upper one, the anomalous diffusion occurs purely due to the molecular crowding. Further analysis indicates that the physical origin of subdiffusion is the "cage effect". Moreover, the subdiffusion exponent α decreases with the increasing medium viscosity and the degree of crowding, and gets a minimum αmin=0.75 at δ=1. At long time scales, normal diffusion of a tracer is recovered. For δ≤1, the relative mobility of tracers is independent of the degree of crowding. Meanwhile, it is sensitive to the degree of crowding for δ>1. Our results are helpful in deepening the understanding of the diffusive properties of biomacromolecules that lie within crowded intracellular environments, such as proteins, DNA and ribosomes.

     

  • loading
  • [1]
    R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell, London: Taylor and Francis Group (2008).
    [2]
    B. D. Hughes, Random Walks and Random Environ-ments, Oxford, UK: Clarendon Press (1995).
    [3]
    S. B. Zimmerman and S. O. Trach, J. Mol. Biol. 222, 599 (1991).
    [4]
    R. J. Ellis and A. P. Minton, Nature 425, 27 (2003).
    [5]
    A. P. Minton, J. Cell Sci. 119, 2863 (2006).
    [6]
    J. H. Jeon, M. Javanainen, H. Martinez-Seara, R. Metzler, and I. Vattulainen, Phys. Rev. X 6, 021006 (2016).
    [7]
    R. Metzler, J. H. Jeon, and A. G. Cherstvy, Biochem. Biophys. Acta BBA-Biomembr. 1858, 2451 (2016).
    [8]
    A. Godec and R. Metzler, Phys. Rev. E 92, 010701(R) (2015).
    [9]
    R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
    [10]
    F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).
    [11]
    T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, Biophys. J. 70, 2767 (1996).
    [12]
    D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
    [13]
    J. A. Dix and A. S. Verkman, Annu. Rev. Biophys. Biomol. Struct. 37, 247 (2008).
    [14]
    O. Seksek, J. Biwersi, and A. S. Verkman, Biophys. J. 75, 557 (1998).
    [15]
    N. Periasamy and A. S. Verkman, J. Cell Biol. 37, 6316 (2009).
    [16]
    M. Ario-Dupont, G. Foucault, M. Vacher, F. Devaux, and S. Cribier, Biophys. J. 78, 901 (2000).
    [17]
    M. Platani, I. Goldberg, J. R. Swedlow, and A. I. Lamond, J. Cell Biol. 151, 1561 (2000).
    [18]
    A. S. Verkman, Science 27, 27 (2002).
    [19]
    E. O. Potma, W. P. de Boeij, L. Bosgraaf, J. Roelofs, P. J. M. Van Haastert, and D. A. Wiersma, Biophys. J. 81, 2010 (2001).
    [20]
    Y. Cheng, R. K. Prud'homme, and T. L. Thomas, Macromolecules 35, 8111 (2002).
    [21]
    M. Platani, I. Goldberg, J. R. Swedlow, and A. I. Lamond, Nat. Cell Biol. 4, 502 (2002).
    [22]
    M. Wachsmuth, T. Weidemann, G. MÄuller, M. W. Hoffman-Rohrer, T. A. Knoch, W. Waldeck, and J. Langowski, Biophys. J. 84, 3353 (2003).
    [23]
    N. Fatin-Rouge, K. Starchev, and J. Buffle, Biophys. J. 86, 2710 (2004).
    [24]
    E. Vilaseca, I. Pastor, A. Isvoran, S. Madurga, J. L. Garces, and F. Mas, Theor. Chem. Acc. 128, 795 (2011).
    [25]
    M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J. 87, 3518 (2004).
    [26]
    J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
    [27]
    A. Y. Grosberg, Phys. Rev. Lett. 85, 3858 (2000).
    [28]
    J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev. Lett. 106, 048103 (2011).
    [29]
    K. Nakazato and K. Kitahara, Prog. Theor. Phys. 64, 2261 (1980).
    [30]
    Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett. 101, 058101 (2008).
    [31]
    E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65, 29 (2012).
    [32]
    J. H. Jeon, H. Martinez-Seara Monne, M. Javanainen, and R. Metzler, Phys. Rev. Lett. 109, 188103 (2012).
    [33]
    S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys. Chem. Chem. Phys. 17, 1847 (2015).
    [34]
    (a) M. J. Saxton, Biophys. J. 52, 989 (1987); (b) M. J. Saxton, Biophys. J. 58, 1303 (1990); (c) M. J. Saxton, Biophys. J. 64, 1053 (1993); (d) M. J. Saxton, Biophys. J. 66, 394 (1994); (d) M. J. Saxton, Biophys. J. 81, 2226 (2001).
    [35]
    E. Vilaseca, A. Isvoran, S. Madurga, I. Pastor, J. L. Garces, and F. Mas, Phys. Chem. Chem. Phys. 13, 7396 (2011).
    [36]
    S. Burov, J. H. Jeon, R. Metzler, and E. Barkai, Phys. Chem. Chem. Phys. 13, 1800 (2011).
    [37]
    R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014).
    [38]
    T. Miyaguchi and T. Akimoto, Phys. Rev. E 91, 010102(R) (2015).
    [39]
    H. Berry and H. Chaté, Phys. Rev. E 89, 022708 (2014).
    [40]
    H. J. Kim, Phys. Rev. E 90, 012103 (2014).
    [41]
    T. Neusius, I. M. Sokolov, and J. C. Smith, Phys. Rev. E 80, 011109 (2009).
    [42]
    F. D. A. Aarão Reis and D. di Caprio, Phys. Rev. E 89, 062126 (2014).
    [43]
    D. S. Banks, C. Tressler, R. D. Peters, F. Höfling, and C. Fradin, Soft Matter 12, 4190 (2016).
    [44]
    K. A. Sharp, Proc. Natl. Acad. Sci. USA 112, 7990 (2015).
    [45]
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, New York: Oxford University, (1987).
    [46]
    A. S. Bodrova, A. V. Chechkin, A. G. Cherstvy, H. Safdari, I. M. Sokolov, and R. Metzler, Sci. Rep. 6, 30520 (2016).
    [47]
    D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169 (1980).
    [48]
    W. T. Coffey and Y. P. Kalmykov, The Langevin Equa-tion, Singapore: World Scientific, (2012).
    [49]
    S. K. Ghosh, A. G. Cherstvy, D. S. Grebenkov, and R. Metzler, New J. Phys. 18, 013027 (2016).
    [50]
    T. Sentjabrskaja, E. Zaccarelli, C. De Michele, F. Sciortino, P. Tartaglia, T. Voigtmann, S. U. Egelhaaf, and M. Laurati, Nat. Commun. 7, 11133 (2016).
    [51]
    S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A.Wood, M. E. Seitz, K. I. Winey, N. Clarke, and R. J. Composto, Macromolecules 44, 3494 (2011).
    [52]
    S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A. Wood, K. I. Winey, N. Clarke, and R. J. Composto, Soft Matter 8, 6512 (2012).
    [53]
    C. Lin, S. Gam, J. S. Meth, N. Clarke, K. I. Winey, and R. J. Composto, Macromolecules 46, 4502 (2013).
    [54]
    J. Choi, M. J. A. Hore, N. Clarke, K. I. Winey, and R. J. Composto, Macromolecules 47, 2404 (2014).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1968) PDF downloads(874) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return