Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184
Citation: Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184

Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders

doi: 10.1063/1674-0068/30/cjcp1609184
  • Received Date: 2016-09-22
  • Rev Recd Date: 2016-10-29
  • The dynamics of tracers in crowded matrix is of interest in various areas of physics, such as the diffusion of proteins in living cells. By using two-dimensional (2D) Langevin dynamics simulations, we investigate the diffusive properties of a tracer of a diameter in crowded environments caused by randomly distributed crowders of a diameter. Results show that the emergence of subdiffusion of a tracer at intermediate time scales depends on the size ratio of the tracer to crowders δ. If δ falls between a lower critical size ratio and a upper one, the anomalous diffusion occurs purely due to the molecular crowding. Further analysis indicates that the physical origin of subdiffusion is the "cage effect". Moreover, the subdiffusion exponent α decreases with the increasing medium viscosity and the degree of crowding, and gets a minimum αmin=0.75 at δ=1. At long time scales, normal diffusion of a tracer is recovered. For δ≤1, the relative mobility of tracers is independent of the degree of crowding. Meanwhile, it is sensitive to the degree of crowding for δ>1. Our results are helpful in deepening the understanding of the diffusive properties of biomacromolecules that lie within crowded intracellular environments, such as proteins, DNA and ribosomes.
  • 加载中
  • [1] R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell, London: Taylor and Francis Group (2008).
    [2] B. D. Hughes, Random Walks and Random Environ-ments, Oxford, UK: Clarendon Press (1995).
    [3] S. B. Zimmerman and S. O. Trach, J. Mol. Biol. 222, 599 (1991).
    [4] R. J. Ellis and A. P. Minton, Nature 425, 27 (2003).
    [5] A. P. Minton, J. Cell Sci. 119, 2863 (2006).
    [6] J. H. Jeon, M. Javanainen, H. Martinez-Seara, R. Metzler, and I. Vattulainen, Phys. Rev. X 6, 021006 (2016).
    [7] R. Metzler, J. H. Jeon, and A. G. Cherstvy, Biochem. Biophys. Acta BBA-Biomembr. 1858, 2451 (2016).
    [8] A. Godec and R. Metzler, Phys. Rev. E 92, 010701(R) (2015).
    [9] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
    [10] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602 (2013).
    [11] T. J. Feder, I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb, Biophys. J. 70, 2767 (1996).
    [12] D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
    [13] J. A. Dix and A. S. Verkman, Annu. Rev. Biophys. Biomol. Struct. 37, 247 (2008).
    [14] O. Seksek, J. Biwersi, and A. S. Verkman, Biophys. J. 75, 557 (1998).
    [15] N. Periasamy and A. S. Verkman, J. Cell Biol. 37, 6316 (2009).
    [16] M. Ario-Dupont, G. Foucault, M. Vacher, F. Devaux, and S. Cribier, Biophys. J. 78, 901 (2000).
    [17] M. Platani, I. Goldberg, J. R. Swedlow, and A. I. Lamond, J. Cell Biol. 151, 1561 (2000).
    [18] A. S. Verkman, Science 27, 27 (2002).
    [19] E. O. Potma, W. P. de Boeij, L. Bosgraaf, J. Roelofs, P. J. M. Van Haastert, and D. A. Wiersma, Biophys. J. 81, 2010 (2001).
    [20] Y. Cheng, R. K. Prud'homme, and T. L. Thomas, Macromolecules 35, 8111 (2002).
    [21] M. Platani, I. Goldberg, J. R. Swedlow, and A. I. Lamond, Nat. Cell Biol. 4, 502 (2002).
    [22] M. Wachsmuth, T. Weidemann, G. MÄuller, M. W. Hoffman-Rohrer, T. A. Knoch, W. Waldeck, and J. Langowski, Biophys. J. 84, 3353 (2003).
    [23] N. Fatin-Rouge, K. Starchev, and J. Buffle, Biophys. J. 86, 2710 (2004).
    [24] E. Vilaseca, I. Pastor, A. Isvoran, S. Madurga, J. L. Garces, and F. Mas, Theor. Chem. Acc. 128, 795 (2011).
    [25] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, Biophys. J. 87, 3518 (2004).
    [26] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
    [27] A. Y. Grosberg, Phys. Rev. Lett. 85, 3858 (2000).
    [28] J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev. Lett. 106, 048103 (2011).
    [29] K. Nakazato and K. Kitahara, Prog. Theor. Phys. 64, 2261 (1980).
    [30] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev. Lett. 101, 058101 (2008).
    [31] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65, 29 (2012).
    [32] J. H. Jeon, H. Martinez-Seara Monne, M. Javanainen, and R. Metzler, Phys. Rev. Lett. 109, 188103 (2012).
    [33] S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys. Chem. Chem. Phys. 17, 1847 (2015).
    [34] (a) M. J. Saxton, Biophys. J. 52, 989 (1987); (b) M. J. Saxton, Biophys. J. 58, 1303 (1990); (c) M. J. Saxton, Biophys. J. 64, 1053 (1993); (d) M. J. Saxton, Biophys. J. 66, 394 (1994); (d) M. J. Saxton, Biophys. J. 81, 2226 (2001).
    [35] E. Vilaseca, A. Isvoran, S. Madurga, I. Pastor, J. L. Garces, and F. Mas, Phys. Chem. Chem. Phys. 13, 7396 (2011).
    [36] S. Burov, J. H. Jeon, R. Metzler, and E. Barkai, Phys. Chem. Chem. Phys. 13, 1800 (2011).
    [37] R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014).
    [38] T. Miyaguchi and T. Akimoto, Phys. Rev. E 91, 010102(R) (2015).
    [39] H. Berry and H. Chaté, Phys. Rev. E 89, 022708 (2014).
    [40] H. J. Kim, Phys. Rev. E 90, 012103 (2014).
    [41] T. Neusius, I. M. Sokolov, and J. C. Smith, Phys. Rev. E 80, 011109 (2009).
    [42] F. D. A. Aarão Reis and D. di Caprio, Phys. Rev. E 89, 062126 (2014).
    [43] D. S. Banks, C. Tressler, R. D. Peters, F. Höfling, and C. Fradin, Soft Matter 12, 4190 (2016).
    [44] K. A. Sharp, Proc. Natl. Acad. Sci. USA 112, 7990 (2015).
    [45] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, New York: Oxford University, (1987).
    [46] A. S. Bodrova, A. V. Chechkin, A. G. Cherstvy, H. Safdari, I. M. Sokolov, and R. Metzler, Sci. Rep. 6, 30520 (2016).
    [47] D. L. Ermak and H. Buckholz, J. Comput. Phys. 35, 169 (1980).
    [48] W. T. Coffey and Y. P. Kalmykov, The Langevin Equa-tion, Singapore: World Scientific, (2012).
    [49] S. K. Ghosh, A. G. Cherstvy, D. S. Grebenkov, and R. Metzler, New J. Phys. 18, 013027 (2016).
    [50] T. Sentjabrskaja, E. Zaccarelli, C. De Michele, F. Sciortino, P. Tartaglia, T. Voigtmann, S. U. Egelhaaf, and M. Laurati, Nat. Commun. 7, 11133 (2016).
    [51] S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A.Wood, M. E. Seitz, K. I. Winey, N. Clarke, and R. J. Composto, Macromolecules 44, 3494 (2011).
    [52] S. Gam, J. S. Meth, S. G. Zane, C. Chi, B. A. Wood, K. I. Winey, N. Clarke, and R. J. Composto, Soft Matter 8, 6512 (2012).
    [53] C. Lin, S. Gam, J. S. Meth, N. Clarke, K. I. Winey, and R. J. Composto, Macromolecules 46, 4502 (2013).
    [54] J. Choi, M. J. A. Hore, N. Clarke, K. I. Winey, and R. J. Composto, Macromolecules 47, 2404 (2014).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1530) PDF downloads(871) Cited by()

Proportional views
Related

Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders

doi: 10.1063/1674-0068/30/cjcp1609184

Abstract: The dynamics of tracers in crowded matrix is of interest in various areas of physics, such as the diffusion of proteins in living cells. By using two-dimensional (2D) Langevin dynamics simulations, we investigate the diffusive properties of a tracer of a diameter in crowded environments caused by randomly distributed crowders of a diameter. Results show that the emergence of subdiffusion of a tracer at intermediate time scales depends on the size ratio of the tracer to crowders δ. If δ falls between a lower critical size ratio and a upper one, the anomalous diffusion occurs purely due to the molecular crowding. Further analysis indicates that the physical origin of subdiffusion is the "cage effect". Moreover, the subdiffusion exponent α decreases with the increasing medium viscosity and the degree of crowding, and gets a minimum αmin=0.75 at δ=1. At long time scales, normal diffusion of a tracer is recovered. For δ≤1, the relative mobility of tracers is independent of the degree of crowding. Meanwhile, it is sensitive to the degree of crowding for δ>1. Our results are helpful in deepening the understanding of the diffusive properties of biomacromolecules that lie within crowded intracellular environments, such as proteins, DNA and ribosomes.

Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184
Citation: Yi-ding Ma, Kai-fu Luo. Anomalous and Normal Diffusion of Tracers in Crowded Environments: E ect of Size Disparity between Tracer and Crowders[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 147-152. doi: 10.1063/1674-0068/30/cjcp1609184
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return