Bin Mei, Gao-lin Liang. Paclitaxel Hydrogelator Delays Microtubule Aggregation[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 239-242. doi: 10.1063/1674-0068/30/cjcp1609179
Citation: Bin Mei, Gao-lin Liang. Paclitaxel Hydrogelator Delays Microtubule Aggregation[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 239-242. doi: 10.1063/1674-0068/30/cjcp1609179

Paclitaxel Hydrogelator Delays Microtubule Aggregation

doi: 10.1063/1674-0068/30/cjcp1609179
  • Received Date: 2016-09-11
  • Rev Recd Date: 2016-10-23
  • Paclitaxel (PTX) is one of the most efficient anticancer drugs for the treatment of cancers through β-tubulin-binding. Our previous work indicated that a PTX-derivative hydroge-lator Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr(H2PO3)-OH (1)could promote neuron branching but the underlying mechanism remains unclear. Using tubulin assembly-disassembly assay, in this work, we found that compound 1 obviously delayed more microtubule aggregation than PTX did. Under the catalysis of alkaline phosphatase, Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr(H2PO3)-OH could self-assemble into nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH with width comparable to the size of αβ-tubulin dimer. Therefore, we proposed in this work that nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH not only inhibits the αβ-tubulin dimer binding to each other but also interferes with the plus end aggregation of microtubule. This work provides a new mechanism of the inhibition of microtubule formation by a PTX-derivative hydrogelator.
  • 加载中
  • [1] E. K. Rowinsky and R. C. Donehower, N. Eng. J. Med. 332, 1004 (1995).
    [2] T. M. Mekhail and M. Markman, Expert Opin. Phar-macother. 3, 755 (2002)
    [3] A. R. Hanauske, Anticancer Drugs 2, 29 (1996).
    [4] Y. Wei, Z. Xue, Y. Ye, Y. Huang, and L. Zhao, Arch. Pharm. Res. 37, 728 (2014).
    [5] N. I. Marupudi, J. E. Han, K. W. Li, V. M. Renard, B. M. Tyler, and H. Brem, Expert. Opin. Drug Saf. 6, 609 (2007).
    [6] P. B. Schiff, J. Fant, and S. B. Horwitz, Nature 277, 665 (1979).
    [7] P. B. Schiff and S. B. Horwitz, Biochemistry 20, 3247 (1981).
    [8] O. N. Zefirova, E. V. Nurieva, H. Lemcke, A. A. Ivanov, D. V. Shishov, D. G. Weiss, S. A. Kuznetsov, and N. S. Zefirov, Bioorg. Med. Chem. Lett. 18, 5091 (2008).
    [9] J. Wei, H. Wang, M. Zhu, D. Ding, D. Li, Z. Yin, L. Wang and Z. Yang, Nanoscale 20, 9902 (2013).
    [10] H. Wang and Z. Yang, Nanoscale 4, 5259 (2012).
    [11] J. Liu, L. Zhang, Z. Yang, and X. Zhao, Int. J. Nanomedicine 6, 2143 (2011).
    [12] Y. Yuan, L. Wang, W. Du, Z. Ding, J. Zhang, T. Han, L. An, H. Zhang, and G. Liang, Angew. Chem. Int. Ed. 54, 9700 (2015).
    [13] B. Mei, Q. Miao, A. Tang, and G. Liang, Nanoscale 7, 15605 (2015).
    [14] E. N. Cline, M. H. Li, S. K. Choi, J. F. Herbstman, N. Kaul, E. Meyhofer, G. Skiniotis, J. R. Baker, R. G. Larson, and N. G. Walter, Biomacromolecules 14, 654 (2013).
    [15] H. M. Wang, J. Wei, C. B. Yang, H. Y. Zhao, D. X. Li, Z. N. Yin, and Z. M. Yang, Biomaterials 33, 5848 (2012).
    [16] Y. Gao, Y. Kuang, Z. F. Guo, Z. Guo, I. J. Krauss, and B. Xu, J. Am. Chem. Soc. 131, 13576 (2009).
    [17] Y. Kuang and B. Xu, Angew Chem. Int. Ed. 52, 6944 (2013).
    [18] K. Park, J. Control. Release 158, 355 (2012).
    [19] B. Bacsa and C. O. Kappe, Nat. Protoc. 2, 2222 (2007).
    [20] A. Matov, K. Applegate, P. Kumar, C. Thoma, W. Krek, G. Danuser, and T. Wittmann, Nat. Methods 7, 761 (2010).
    [21] H. P. Miller and L. Wilson, Methods Cell Biol. 95, 3 (2010).
    [22] M. Castoldi and A. V. Popov, Protein Expr. Purif. 32, 83 (2003).
    [23] M. Wieczorek, S. Bechstedt, S. Chaaban, and G. J. Brouhard, Nat. Cell Biol. 17, 907 (2015).
    [24] M. Moritz, M. B. Braunfeld, J. W. Sedat, B. Alberts, and D. A. Agard, Nature 378, 638 (1995).
    [25] Y. Zheng, M. L. Wong, B. Alberts, and T. Mitchison, Nature 378, 578 (1995).
    [26] K. McNally, A. Audhya, K. Oegema, and F. J. McNally, J. Cell Biol. 175, 881 (2006).
    [27] M. Srayko, A. Kaya, J. Stamford, and A. A. Hyman, Dev. Cell 9, 223 (2005).
    [28] J. J. Lindeboom, M. Nakamura, A. Hibbel, K. Shundyak, R. Gutierrez, T. Ketelaar, A. M. Emons, B. M. Mulder, V. Kirik, and D. W. Ehrhardt, Science 342, 1245533 (2013).
    [29] P. W. Baas, Neuron 78, 3 (2013).
    [30] S. Sahu, S. Ghosh, B. Ghosh, K. Aswani, K. Hirata, D. Fujita, and A. Bandyopadhyay, Biosens. Bioelectron. 47, 141 (2013).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1315) PDF downloads(801) Cited by()

Proportional views
Related

Paclitaxel Hydrogelator Delays Microtubule Aggregation

doi: 10.1063/1674-0068/30/cjcp1609179

Abstract: Paclitaxel (PTX) is one of the most efficient anticancer drugs for the treatment of cancers through β-tubulin-binding. Our previous work indicated that a PTX-derivative hydroge-lator Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr(H2PO3)-OH (1)could promote neuron branching but the underlying mechanism remains unclear. Using tubulin assembly-disassembly assay, in this work, we found that compound 1 obviously delayed more microtubule aggregation than PTX did. Under the catalysis of alkaline phosphatase, Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr(H2PO3)-OH could self-assemble into nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH with width comparable to the size of αβ-tubulin dimer. Therefore, we proposed in this work that nanofiber Fmoc-Phe-Phe-Lys(paclitaxel)-Tyr-OH not only inhibits the αβ-tubulin dimer binding to each other but also interferes with the plus end aggregation of microtubule. This work provides a new mechanism of the inhibition of microtubule formation by a PTX-derivative hydrogelator.

Bin Mei, Gao-lin Liang. Paclitaxel Hydrogelator Delays Microtubule Aggregation[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 239-242. doi: 10.1063/1674-0068/30/cjcp1609179
Citation: Bin Mei, Gao-lin Liang. Paclitaxel Hydrogelator Delays Microtubule Aggregation[J]. Chinese Journal of Chemical Physics , 2017, 30(2): 239-242. doi: 10.1063/1674-0068/30/cjcp1609179
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return